This article is about the algebra called generalized Clifford algebra (GCA). For (orthogonal) Clifford algebra, see Clifford algebra. For symplectic Clifford algebra, see Weyl algebra.
Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces.[5][6][7] The concept of a spinor can further be linked to these algebras.[6]
The term generalized Clifford algebra can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms.[8][9][10][11]
Definition and properties
Abstract definition
The n-dimensional generalized Clifford algebra is defined as an associative algebra over a field F, generated by[12]
and
∀ j,k,ℓ,m = 1, . . . ,n.
Moreover, in any irreducible matrix representation, relevant for physical applications, it is required that
∀ j,k = 1, . . . ,n, and gcd. The field F is usually taken to be the complex numbers C.
In the more common cases of GCA,[6] the n-dimensional generalized Clifford algebra of order p has the property ωkj = ω, for all j,k, and . It follows that
and
for all j,k,ℓ = 1, . . . ,n, and
is the pth root of 1.
There exist several definitions of a Generalized Clifford Algebra in the literature.[13]
Clifford algebra
In the (orthogonal) Clifford algebra, the elements follow an anticommutation rule, with ω = −1, and p = 2.
The Clock and Shift matrices can be represented[14] by n×n matrices in Schwinger's canonical notation as
.
Notably, Vn = 1, VU = ωUV (the Weyl braiding relations), and W−1VW = U (the discrete Fourier transform).
With e1 = V , e2 = VU, and e3 = U, one has three basis elements which, together with ω, fulfil the above conditions of the Generalized Clifford Algebra (GCA).
^Sylvester, J. J. (1882), A word on Nonions, Johns Hopkins University Circulars, vol. I, pp. 241–2; ibid II (1883) 46;
ibid III (1884) 7–9. Summarized in The Collected Mathematics Papers of James Joseph Sylvester (Cambridge University Press, 1909) v III .
online and further.
^Childs, Lindsay N. (30 May 2007). "Linearizing of n-ic forms and generalized Clifford algebras". Linear and Multilinear Algebra. 5 (4): 267–278. doi:10.1080/03081087808817206.
Fairlie, D. B.; Fletcher, P.; Zachos, C. K. (1990). "Infinite-dimensional algebras and a trigonometric basis for the classical Lie algebras". Journal of Mathematical Physics. 31 (5): 1088. Bibcode:1990JMP....31.1088F. doi:10.1063/1.528788.
Jagannathan, R. (2010). "On generalized Clifford algebras and their physical applications". arXiv:1005.4300 [math-ph]. (In The legacy of Alladi Ramakrishnan in the mathematical sciences (pp. 465–489). Springer, New York, NY.)