Gaussian network model

Figure 1: Gaussian network model (GNM) representation of the nucleosome core particle (PDB id: 1KX4). The beads/nodes represent the residues (amino acids, gray; and nucleotides at their P (orange), C4‘- and C2-atoms (white). The nodes are connected by elastic springs (light-gray for protein intramolecular, yellow for DNA/RNA intramolecular, and cyan (protein-DNA intermolecular).

The Gaussian network model (GNM) is a representation of a biological macromolecule as an elastic mass-and-spring network to study, understand, and characterize the mechanical aspects of its long-time large-scale dynamics. The model has a wide range of applications from small proteins such as enzymes composed of a single domain, to large macromolecular assemblies such as a ribosome or a viral capsid. Protein domain dynamics plays key roles in a multitude of molecular recognition and cell signalling processes. Protein domains, connected by intrinsically disordered flexible linker domains, induce long-range allostery via protein domain dynamics. The resultant dynamic modes cannot be generally predicted from static structures of either the entire protein or individual domains.

The Gaussian network model is a minimalist, coarse-grained approach to study biological molecules. In the model, proteins are represented by nodes corresponding to α-carbons of the amino acid residues. Similarly, DNA and RNA structures are represented with one to three nodes for each nucleotide. The model uses the harmonic approximation to model interactions. This coarse-grained representation makes the calculations computationally inexpensive.

At the molecular level, many biological phenomena, such as catalytic activity of an enzyme, occur within the range of nano- to millisecond timescales. All atom simulation techniques, such as molecular dynamics simulations, rarely reach microsecond trajectory length, depending on the size of the system and accessible computational resources. Normal mode analysis in the context of GNM, or elastic network (EN) models in general, provides insights on the longer-scale functional dynamic behaviors of macromolecules. Here, the model captures native state functional motions of a biomolecule at the cost of atomic detail. The inference obtained from this model is complementary to atomic detail simulation techniques.

Another model for protein dynamics based on elastic mass-and-spring networks is the Anisotropic Network Model.

Gaussian network model theory

Figure 2: Schematic representation of nodes in elastic network of GNM. Every node is connected to its spatial neighbors by uniform springs. Distance vector between two nodes, i and j, is shown by an arrow and labeled Rij. Equilibrium positions of the ith and jth nodes, R0i and R0j, are shown in xyz coordinate system. R0ij is the equilibrium distance between nodes i and j. Instantaneous fluctuation vectors, ΔRi and ΔRj, and instantaneous distance vector, Rij, are shown by the dashed arrows.

The Gaussian network model was proposed by Bahar, Atilgan, Haliloglu and Erman in 1997.[1][2] The GNM is often analyzed using normal mode analysis, which offers an analytical formulation and unique solution for each structure. The GNM normal mode analysis differs from other normal mode analyses in that it is exclusively based on inter-residue contact topology, influenced by the theory of elasticity of Flory [3] and the Rouse model[4] and does not take the three-dimensional directionality of motions into account.

Representation of structure as an elastic network

Figure 2 shows a schematic view of elastic network studied in GNM. Metal beads represent the nodes in this Gaussian network (residues of a protein) and springs represent the connections between the nodes (covalent and non-covalent interactions between residues). For nodes i and j, equilibrium position vectors, R0i and R0j, equilibrium distance vector, R0ij, instantaneous fluctuation vectors, ΔRi and ΔRj, and instantaneous distance vector, Rij, are shown in Figure 2. Instantaneous position vectors of these nodes are defined by Ri and Rj. The difference between equilibrium position vector and instantaneous position vector of residue i gives the instantaneous fluctuation vector, ΔRi = Ri - R0i. Hence, the instantaneous fluctuation vector between nodes i and j is expressed as ΔRij = ΔRj - ΔRi = Rij - R0ij.

Potential of the Gaussian network

The potential energy of the network in terms of ΔRi is

where γ is a force constant uniform for all springs and Γij is the ijth element of the Kirchhoff (or connectivity) matrix of inter-residue contacts, Γ, defined by

rc is a cutoff distance for spatial interactions and taken to be 7 Å for amino acid pairs (represented by their α-carbons).

Expressing the X, Y and Z components of the fluctuation vectors ΔRi as ΔXT = [ΔX1 ΔX2 ..... ΔXN], ΔYT = [ΔY1 ΔY2 ..... ΔYN], and ΔZT = [ΔZ1 ΔZ2 ..... ΔZN], above equation simplifies to

Statistical mechanics foundations

In the GNM, the probability distribution of all fluctuations, P(ΔR) is isotropic

and Gaussian

where kB is the Boltzmann constant and T is the absolute temperature. p(ΔY) and p(ΔZ) are expressed similarly. N-dimensional Gaussian probability density function with random variable vector x, mean vector μ and covariance matrix Σ is

normalizes the distribution and |Σ| is the determinant of the covariance matrix.

Similar to Gaussian distribution, normalized distribution for ΔXT = [ΔX1 ΔX2 ..... ΔXN] around the equilibrium positions can be expressed as

The normalization constant, also the partition function ZX, is given by

where is the covariance matrix in this case. ZY and ZZ are expressed similarly. This formulation requires inversion of the Kirchhoff matrix. In the GNM, the determinant of the Kirchhoff matrix is zero, hence calculation of its inverse requires eigenvalue decomposition. Γ−1 is constructed using the N-1 non-zero eigenvalues and associated eigenvectors. Expressions for p(ΔY) and p(ΔZ) are similar to that of p(ΔX). The probability distribution of all fluctuations in GNM becomes

For this mass and spring system, the normalization constant in the preceding expression is the overall GNM partition function, ZGNM,

Expectation values of fluctuations and correlations

The expectation values of residue fluctuations, <ΔRi2> (also called mean-square fluctuations, MSFs), and their cross-correlations, <ΔRi · ΔRj> can be organized as the diagonal and off-diagonal terms, respectively, of a covariance matrix. Based on statistical mechanics, the covariance matrix for ΔX is given by

The last equality is obtained by inserting the above p(ΔX) and taking the (generalized Gaussian) integral. Since,

<ΔRi2> and <ΔRi · ΔRj> follows

Mode decomposition

The GNM normal modes are found by diagonalization of the Kirchhoff matrix, Γ = UΛUT. Here, U is a unitary matrix, UT = U−1, of the eigenvectors ui of Γ and Λ is the diagonal matrix of eigenvalues λi. The frequency and shape of a mode is represented by its eigenvalue and eigenvector, respectively. Since the Kirchhoff matrix is positive semi-definite, the first eigenvalue, λ1, is zero and the corresponding eigenvector have all its elements equal to 1/N. This shows that the network model translationally invariant.

Cross-correlations between residue fluctuations can be written as a sum over the N-1 nonzero modes as

It follows that, [ΔRi · ΔRj], the contribution of an individual mode is expressed as

where [uk]i is the ith element of uk.

Influence of local packing density

By definition, a diagonal element of the Kirchhoff matrix, Γii, is equal to the degree of a node in GNM that represents the corresponding residue's coordination number. This number is a measure of the local packing density around a given residue. The influence of local packing density can be assessed by series expansion of Γ−1 matrix. Γ can be written as a sum of two matrices, Γ = D + O, containing diagonal elements and off-diagonal elements of Γ.

Γ−1 = (D + O)−1 = [ D (I + D−1O) ]−1 = (I + D−1O)−1D−1 = (I - D−1O + ...)D−1 = D−1 - D−1O D−1 + ...

This expression shows that local packing density makes a significant contribution to expected fluctuations of residues.[5] The terms that follow inverse of the diagonal matrix, are contributions of positional correlations to expected fluctuations.

GNM applications

Figure 3: Example of theoretical prediction of expected residue fluctuations for the catalytic domain of the protein Cdc25B, a cell division cycle dual-specificity phosphatase. A. Comparison of β-factors from X-ray structure (yellow) and theoretical calculations (red). B. Structure of catalytic domain of Cdc25B colored according to theoretical motility of regions. Light blue regions, e.g. topmost alpha-helix next to the catalytic site of this protein, are expected to be more mobile than the rest of the domain. C. Cross-correlation map i.e. normalized <ΔRi·ΔRj> values. Red-colored regions correspond to collective residue motions and blue-colored regions correspond to uncorrelated motions. The results are retrieved iGNM server. PDB ID of Cdc25B is 1QB0.

Equilibrium fluctuations

Equilibrium fluctuations of biological molecules can be experimentally measured. In X-ray crystallography the B-factor (also called Debye-Waller or temperature factor) of each atom is a measure of its mean-square fluctuation near its equilibrium position in the native structure. In NMR experiments, this measure can be obtained by calculating root-mean-square differences between different models. In many applications and publications, including the original articles, it has been shown that expected residue fluctuations obtained by the GNM are in good agreement with the experimentally measured native state fluctuations.[6][7] The relation between B-factors, for example, and expected residue fluctuations obtained from GNM is as follows

Figure 3 shows an example of GNM calculation for the catalytic domain of the protein Cdc25B, a cell division cycle dual-specificity phosphatase.

Figure 4: Slow modes obtained from GNM calculations are depicted on Cdc2B catalytic domain. A. Plot of the slowest mode. B. Mapping of the amplitude of motion in the slowest mode onto protein structure. The alpha-helix nearby the catalytic site of this domain is the most mobile region of the protein along the slowest mode. Expected values of fluctuations were also highest at this region, as shown in Figure 3. The results are retrieved iGNM server. PDB ID of Cdc25B is 1QB0.

Physical meanings of slow and fast modes

Diagonalization of the Kirchhoff matrix decomposes the conformational motions into a spectrum of collective modes. The expected values of fluctuations and cross-correlations are obtained from linear combinations of fluctuations along these normal modes. The contribution of each mode is scaled with the inverse of that modes frequency. Hence, slow (low frequency) modes contribute most to the expected fluctuations. Along the few slowest modes, motions are shown to be collective and global and potentially relevant to functionality of the biomolecules. Fast (high frequency) modes, on the other hand, describe uncorrelated motions not inducing notable changes in the structure. GNM-based methods do not provide real dynamics but only an approximation based on the combination and interpolation of normal modes.[8] Their applicability strongly depends on how collective the motion is.[8][9]

Other specific applications

There are several major areas in which the Gaussian network model and other elastic network models have proved to be useful.[10] These include:

  • Spring bead based network model: In spring-bead based network model, the springs and beads are used as components in the crosslinked network. Springs are cross-linked to represent mechanical behavior of the material and bridge molecular dynamics (MD) model and finite element (FE) model (see Figure. 5). The beads represent material mass of cluster bonds. Each spring is used to represent a cluster of polymer chains, instead of part of a single polymer chain. This simplification allows to bridge different models at multiple length scales and improves the simulation efficiency significantly. At each iteration step in the simulation, forces in the springs are applied to the nodes at the center of the beads, and the equilibrated nodal displacements throughout the system are calculated. Different from the traditional FE method for obtaining stress and strain, the spring–bead model provides the displacements of the nodes and forces in the springs. The equivalent strain and strain energy of spring–bead based network model can be defined and calculated using the displacements of nodes and the spring characteristics. Furthermore, the results from the network model can be scaled up to obtain the structural response at the macroscale using FE analysis.[11][12]
  • Decomposition of flexible/rigid regions and domains of proteins [13][14][15]
  • Characterization of functional motions and functionally important sites/residues of proteins, enzymes and large macromolecular assemblies [16][11][17][18][19][20][21][22][23][24][25][26]
  • Refinement and dynamics of low-resolution structural data, e.g. Cryo-electron microscopy[27][28][29][30]
  • Molecular replacement for solving X-ray structures, when a conformational change occurred, with respect to a known structure[31]
  • Integration with atomistic models and simulations [32][33]
  • Investigation of folding/unfolding pathways and kinetics.[34][35]
  • Annotation of functional implication in molecular evolution [36][37]

Web servers

In practice, two kinds of calculations can be performed. The first kind (the GNM per se) makes use of the Kirchhoff matrix.[1][2] The second kind (more specifically called either the Elastic Network Model or the Anisotropic Network Model) makes use of the Hessian matrix associated to the corresponding set of harmonic springs.[38] Both kinds of models can be used online, using the following servers.

GNM servers

ENM/ANM servers

Other relevant servers

See also

References

Primary sources

  • Bahar, I.; Atilgan, A. R.; Erman, B. (1997). "Direct evaluation of thermal fluctuations in protein using a single parameter harmonic potential". Folding & Design. 2 (3): 173–181. doi:10.1016/s1359-0278(97)00024-2. PMID 9218955.
  • Haliloglu, T. Bahar; Erman, B. (1997). "Gaussian dynamics of folded proteins". Phys. Rev. Lett. 79 (16): 3090–3093. Bibcode:1997PhRvL..79.3090H. doi:10.1103/physrevlett.79.3090.
  • Cui Q, Bahar I, (2006). Normal Mode Analysis: Theory and applications to biological and chemical systems, Chapman & Hall/CRC, London, UK

Specific citations

  1. ^ a b Bahar, I.; Atilgan, A. R.; Erman, B. (1997). "Direct evaluation of thermal fluctuations in protein using a single parameter harmonic potential". Folding & Design. 2 (3): 173–181. doi:10.1016/s1359-0278(97)00024-2. PMID 9218955.
  2. ^ a b Haliloglu, T. Bahar; Erman, B (1997). "Gaussian dynamics of folded proteins". Phys. Rev. Lett. 79 (16): 3090–3093. Bibcode:1997PhRvL..79.3090H. doi:10.1103/physrevlett.79.3090.
  3. ^ Flory, P.J. (1976). "Statistical thermodynamics of random networks". Proc. R. Soc. Lond. A. 351 (1666): 351. Bibcode:1976RSPSA.351..351F. doi:10.1098/rspa.1976.0146. S2CID 122325882.
  4. ^ Rouse, P.E. (1953). "A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers". J. Chem. Phys. 21 (7): 1272. Bibcode:1953JChPh..21.1272R. doi:10.1063/1.1699180.
  5. ^ Halle, B (2002). "Flexibility and packing in proteins". Proc. Natl. Acad. Sci. U.S.A. 99 (3): 1274–1279. Bibcode:2002PNAS...99.1274H. doi:10.1073/pnas.032522499. PMC 122180. PMID 11818549.
  6. ^ Bahar, I.; Wallqvist, A.; Covell, D. G.; Jernigan, R.L. (1998). "Correlation between native state hydrogen exchange and cooperative residue fluctuations from a simple model". Biochemistry. 37 (4): 1067–1075. CiteSeerX 10.1.1.551.9055. doi:10.1021/bi9720641. PMID 9454598.
  7. ^ Bahar, I.; Atilgan, A. R.; Demirel, M. C.; Erman, B. (1998). "Vibrational dynamics of proteins: Significance of slow and fast modes in relation to function and stability". Phys. Rev. Lett. 80 (12): 2733–2736. Bibcode:1998PhRvL..80.2733B. doi:10.1103/physrevlett.80.2733. S2CID 1070176.
  8. ^ a b Kmiecik, Sebastian; Kouza, Maksim; Badaczewska-Dawid, Aleksandra E.; Kloczkowski, Andrzej; Kolinski, Andrzej (2018). "Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models". International Journal of Molecular Sciences. 19 (11): 3496. doi:10.3390/ijms19113496. PMC 6274762. PMID 30404229.
  9. ^ Yang, Lei; Song, Guang; Jernigan, Robert L. (2007-08-01). "How well can we understand large-scale protein motions using normal modes of elastic network models?". Biophysical Journal. 93 (3): 920–929. Bibcode:2007BpJ....93..920Y. doi:10.1529/biophysj.106.095927. ISSN 0006-3495. PMC 1913142. PMID 17483178.
  10. ^ Chennubhotla, C; Rader, AJ; Yang, LW; Bahar, I (2005). "Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies". Phys. Biol. 2 (4): S173 – S180. Bibcode:2005PhBio...2S.173C. doi:10.1088/1478-3975/2/4/S12. PMID 16280623. S2CID 28083452.
  11. ^ a b Zhang, Jinjun (2015). "An optimized cross-linked network model to simulate the linear elastic material response of a smart polymer". Journal of Intelligent Material Systems and Structures. 27 (11): 1461–1475. doi:10.1177/1045389X15595292. S2CID 137709230.
  12. ^ Zhang, Jinjun (2015). "A novel statistical spring-bead based network model for self-sensing smart polymer materials". Smart Materials and Structures. 24 (8): 085022. Bibcode:2015SMaS...24h5022Z. doi:10.1088/0964-1726/24/8/085022. hdl:2286/R.I.35587. S2CID 55578558.
  13. ^ Hinsen, K (1999). "Analysis of domain motions by approximate normal mode calculations". Proteins. 33 (3): 417–429. doi:10.1002/(sici)1097-0134(19981115)33:3<417::aid-prot10>3.0.co;2-8. PMID 9829700. S2CID 33336590.
  14. ^ Rader, AJ.; Anderson, G.; Isin, B.; Khorana, H. G.; Bahar, I.; Klein-Seetharaman, J. (2004). "Identification of core amino acids stabilizing rhodopsin". Proc. Natl. Acad. Sci. U.S.A. 101 (19): 7246–7251. Bibcode:2004PNAS..101.7246R. doi:10.1073/pnas.0401429101. PMC 409904. PMID 15123809.
  15. ^ Kundu, S.; Sorensen, D.C.; Phillips, G.N. Jr (2004). "Automatic domain decomposition of proteins by a Gaussian Network Model". Proteins. 57 (4): 725–733. doi:10.1002/prot.20268. PMID 15478120. S2CID 9600056.
  16. ^ Zhang, Jinjun (2015). "A novel statistical spring-bead based network model for self-sensing smart polymer materials". Smart Materials and Structures. 24 (8): 085022. Bibcode:2015SMaS...24h5022Z. doi:10.1088/0964-1726/24/8/085022. hdl:2286/R.I.35587. S2CID 55578558.
  17. ^ Keskin, O.; et al. (2002). "Relating molecular flexibility to function: a case study of tubulin". Biophys. J. 83 (2): 663–80. Bibcode:2002BpJ....83..663K. doi:10.1016/s0006-3495(02)75199-0. PMC 1302177. PMID 12124255.
  18. ^ Temiz NA & Bahar I, Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase, Proteins: Structure, Function and Genetics 49, 61-70, 2002.
  19. ^ Xu, C., Tobi, D. and Bahar, I. 2003 Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin T<-> R2 transition, J. Mol. Biol., 333, 153.
  20. ^ Dror Tobi & Ivet Bahar, Structural Changes Involved in Protein Binding Correlate with intrinsic Motions of Proteins in the Unbound State, Proc Natl Acad Sci (USA) 102, 18908-18913, 2005.
  21. ^ Shrivastava, Indira H.; Bahar, Ivet (2006). "Common Mechanism of Pore Opening Shared by Five Different Potassium Channels". Biophys J. 90 (11): 3929–3940. Bibcode:2006BpJ....90.3929S. doi:10.1529/biophysj.105.080093. PMC 1459499. PMID 16533848.
  22. ^ Yang, LW; Bahar, I (2005). "Coupling between Catalytic Site and Collective Dynamics: A requirement for Mechanochemical Activity of Enzymes". Structure. 13 (6): 893–904. doi:10.1016/j.str.2005.03.015. PMC 1489920. PMID 15939021.
  23. ^ Chennubhotla, Chakra; Bahar, Ivet (2006). "Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics". Research in Computational Molecular Biology. Lecture Notes in Computer Science. Vol. 3909. pp. 379–393. doi:10.1007/11732990_32. ISBN 978-3-540-33295-4.
  24. ^ Wang, Y. Rader; AJ; Bahar, I.; Jernigan, RL. (2004). "Global Ribosome Motions Revealed with Elastic Network Model". J. Struct. Biol. 147 (3): 302–314. doi:10.1016/j.jsb.2004.01.005. PMID 15450299.
  25. ^ Rader, AJ; Vlad, Daniel; Bahar, Ivet (2005). "Maturation Dynamics of Bacteriophage HK97 Capsid". Structure. 13 (3): 413–21. doi:10.1016/j.str.2004.12.015. PMID 15766543.
  26. ^ Hamacher, K.; Trylska, J.; McCammon, J.A. (2006). "Dependency Map of Proteins in the Small Ribosomal Subunit". PLOS Comput. Biol. 2 (2): e10. Bibcode:2006PLSCB...2...10H. doi:10.1371/journal.pcbi.0020010. PMC 1364506. PMID 16485038.
  27. ^ Ming, D.; et al. (2002). "How to describe protein motion without amino acid sequence and atomic coordinates". Proc. Natl. Acad. Sci. U.S.A. 99 (13): 8620–8625. Bibcode:2002PNAS...99.8620M. doi:10.1073/pnas.082148899. PMC 124334. PMID 12084922.
  28. ^ Tama, F.; Wriggers, W.; Brooks III, C.L. (2002). "Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory". J. Mol. Biol. 321 (2): 297–305. CiteSeerX 10.1.1.457.8. doi:10.1016/s0022-2836(02)00627-7. PMID 12144786.
  29. ^ Delarue, M.; Dumas, P. (2004). "On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models". Proc. Natl. Acad. Sci. U.S.A. 101 (18): 6957–6962. Bibcode:2004PNAS..101.6957D. doi:10.1073/pnas.0400301101. PMC 406448. PMID 15096585.
  30. ^ Micheletti, C.; Carloni, P.; Maritan, A. (2004). ""Accurate and efficient description of protein vibrational dynamics " comparing molecular dynamics and gaussian models". Proteins. 55 (3): 635–45. arXiv:cond-mat/0405145. Bibcode:2004cond.mat..5145M. doi:10.1002/prot.20049. PMID 15103627. S2CID 5348611.
  31. ^ Suhre, K.; Sanejouand, Y.H. (2004). "On the potential of normal mode analysis for solving difficult molecular replacement problems". Acta Crystallogr. D. 60 (4): 796–9. doi:10.1107/s0907444904001982. PMID 15039589.
  32. ^ Zhang, Z.Y.; Shi, Y.Y.; Liu, H.Y. (2003). "Molecular dynamics simulations of peptides and proteins with amplified collective motions". Biophys. J. 84 (6): 3583–93. Bibcode:2003BpJ....84.3583Z. doi:10.1016/s0006-3495(03)75090-5. PMC 1302944. PMID 12770868.
  33. ^ Micheletti, C.; Lattanzi, G.; Maritan, A. (2002). "Elastic properties of proteins: insight on the folding process and evolutionary selection of native structures". J. Mol. Biol. 321 (5): 909–21. arXiv:cond-mat/0204400. Bibcode:2002cond.mat..4400M. doi:10.1016/s0022-2836(02)00710-6. PMID 12206770. S2CID 8492131.
  34. ^ Micheletti, C.; et al. (2002). "Crucial stages of protein folding through a solvable model: predicting target sites for enzyme-inhibiting drugs". Protein Science. 11 (8): 1878–87. arXiv:cond-mat/0209325. Bibcode:2002cond.mat..9325M. doi:10.1110/ps.3360102. PMC 2373687. PMID 12142442.
  35. ^ Portman, J.J.; Takada, S.; Wolynes, P.G. (2001). "Microscopic theory of protein folding rates. I. fine structure of the free energy profile and folding routes from a variational approach". J. Chem. Phys. 114 (11): 5069. arXiv:cond-mat/0008454. Bibcode:2001JChPh.114.5069P. doi:10.1063/1.1334662. S2CID 14699178.
  36. ^ Hamacher, K (2008). "Relating Sequence Evolution of HIV1-Protease to Its Underlying Molecular Mechanics". Gene. 422 (1–2): 30–36. doi:10.1016/j.gene.2008.06.007. PMID 18590806.
  37. ^ Hamacher, K.; McCammon, J.A. (2006). "Computing the amino acid specificity of fluctuations in biomolecular systems". J. Chem. Theory Comput. 2 (3): 873–8. doi:10.1021/ct050247s. PMID 26626694.
  38. ^ Tirion, M.M. (1996). "Large amplitude elastic motions in proteins from a single-parameter, atomic analysis". Phys. Rev. Lett. 77 (9): 1905–1908. Bibcode:1996PhRvL..77.1905T. doi:10.1103/physrevlett.77.1905. PMID 10063201.
  39. ^ Li, H., Chang, Y. Y., Yang, L. W., & Bahar, I. (2016). iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Research, 44(D1), D415-D422.
  40. ^ Atilgan, AR; Durrell, SR; Jernigan, RL; Demirel, MC; Keskin, O.; Bahar, I. (2001). "Anisotropy of fluctuation dynamics of proteins with an elastic network model". Biophys. J. 80 (1): 505–515. Bibcode:2001BpJ....80..505A. doi:10.1016/s0006-3495(01)76033-x. PMC 1301252. PMID 11159421.
  41. ^ Bakan, A.; Meireles, L. M.; Bahar, I. (2011). "ProDy: protein dynamics inferred from theory and experiments". Bioinformatics. 27 (11): 1575–1577. doi:10.1093/bioinformatics/btr168. PMC 3102222. PMID 21471012.
  42. ^ Bakan, A.; Dutta, A.; Mao, W.; Liu, Y.; Chennubhotla, C.; Lezon, T. R.; Bahar, I. (2014). "Evol and ProDy for bridging protein sequence evolution and structural dynamics". Bioinformatics. 30 (18): 2681–2683. doi:10.1093/bioinformatics/btu336. PMC 4155247. PMID 24849577.

Read other articles:

The album chart name changed from Top Pop Albums to Billboard 200 Top Albums on September 7, 1991.[1] The highest-selling albums and EPs in the United States are ranked in the Billboard 200, which is published by Billboard magazine. The data are compiled by Nielsen Soundscan starting with the week ending on May 25, 1991, based on each album's weekly physical and digital sales. In 1991, a total of 14 albums claimed the top of the chart. One of which, American rapper Vanilla Ice's To t...

 

 

Sub distrik di Distrik Baucau Baguia adalah subdistrik di Distrik Baucau, Timor Leste.[1] Taur Matan Ruak, Presiden Timor Leste lahir di Suco Osso Huna, Baguia pada tahun 1956. Suco Baguia memiliki 10 suco antara lain: Afaloicai Alawa Craik (Alaua-Craik, Alaua Craic) Alawa Leten (Alaua-Leten) Defawase (Defa-Uasse) Hae Coni (Hae-Coni, Haeconi) Larisula (Lari Sula) Lavateri Osso Huna (Osso-Huna) Samalari Uacala Referensi ^ http://statoids.com/ytl.html Artikel bertopik Timor Leste ini ad...

 

 

Gunung QingchengSitus Warisan Dunia UNESCOLokasiKota Dujiangyan, Sichuan, Republik Rakyat TiongkokBagian dariGunung Qingcheng dan Sistem Irigasi DujiangyanKriteriaKebudayaan: (ii)(iv)(vi)Nomor identifikasi1001Pengukuhan2000 (Sesi ke-24)Koordinat31°0′6″N 103°36′19″E / 31.00167°N 103.60528°E / 31.00167; 103.60528Koordinat: 31°0′6″N 103°36′19″E / 31.00167°N 103.60528°E / 31.00167; 103.60528 Situs Warisan Dunia UNESCOBag...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Casale Calcio. Casale Foot Ball ClubStagione 1922-1923Sport calcio Squadra Casale Prima Divisione6º posto nel girone A della Lega Nord. 1921-1922 1923-1924 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti il...

 

 

Pedro Cea Informasi pribadiNama lengkap José Pedro CeaTanggal lahir (1900-09-01)1 September 1900Tempat lahir Redondela, GaliciaTanggal meninggal 18 September 1970(1970-09-18) (umur 70)Tempat meninggal Montevideo, UruguayKarier senior*Tahun Tim Tampil (Gol) Nacional Tim nasional1923-1932 Uruguay 27 (13)Kepelatihan1941-1942 Uruguay Prestasi Mewakili  Uruguay Sepak bola Pria 1924 Paris Kompetisi Tim 1928 Amsterdam Kompetisi Tim * Penampilan dan gol di klub senior hanya dihitung dari ...

 

 

Thomas BlameyJenderal Sir Thomas BlameyNama lahirThomas Albert BlameyLahir(1884-01-24)24 Januari 1884Wagga Wagga, New South WalesMeninggal27 Mei 1951(1951-05-27) (umur 67)Heidelberg, VictoriaPengabdianAustraliaDinas/cabangAngkatan Darat AustraliaLama dinas1906–461950PangkatJenderal BesarNRPVX1 (AIF ke-2)Komandan Pasukan Darat Sekutu, Wilayah Pasifik Barat Daya (1942–45) Pasukan Militer Australia (1942–45) Korps I (1940–41) Divisi ke-6 (1939–40) Divisi ke-3 (1931–37) Brig...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Otto IIIMarkgraf BrandenburgMonumen Otto III (berdiri) dan saudaranya Johann I di Siegesallee, Berlin, oleh Max Baumbach.Markgraf BrandenburgBerkuasa1220–1267PendahuluAlbrecht IIPenerusOtto IVInformasi pribadiKelahiran1215Kematian9 Oktober 1267Brandenburg an der HavelPemakamanGereja di biara Dominikan di StrausbergWangsaWangsa AscaniaAyahAlbrecht IIIbuMathilde dari LausitzPasanganBožena ČeskáAnakJohann III dari BrandenburgOtto V dari BrandenburgAlbrecht III dari BrandenburgOtto VI dari B...

 

 

Basketball player selection 2005 NBA draftGeneral informationSportBasketballDate(s)June 28, 2005LocationMadison Square Garden (New York City, New York)Network(s)ESPNOverview60 total selections in 2 roundsLeagueNBAFirst selectionAndrew Bogut (Milwaukee Bucks)← 20042006 → The 2005 NBA draft took place on June 28, 2005, in the Theatre at Madison Square Garden in New York City. In this draft, NBA teams took turns selecting amateur college basketball players and other fi...

National basketball team of Lithuania LithuaniaFIBA zoneFIBA EuropeNational federationLithuanian Basketball FederationU20 European ChampionshipAppearances10MedalsNoneU20 European Championship Division BAppearances7Medals Silver: 2 (2007, 2016) Bronze: 2 (2005, 2018) The Lithuania women's national under-20 basketball team is a national basketball team of Lithuania, administered by the Lithuanian Basketball Federation.[1][2] It represents the country in women's international und...

 

 

French politician (1785–1870) For other people with a similar name, see Victor de Broglie. Victor de BrogliePrint of de Broglie potentially by Nicolas Eustache MaurinMember of the Académie françaiseIn office1 March 1855 – 25 January 1870Preceded byLouis de BeaupoilSucceeded byProsper Duvergier de HauranneMember of the National Assemblyfor EureIn office28 May 1849 – 3 December 1851Preceded byAlfred CanelSucceeded byConstituency abolishedConstituencyPont-AudemerFrance ...

 

 

Conasauga RiverView of the Conasauga RiverPhysical characteristicsSourceCohutta Mountains • coordinates34°51′57″N 84°35′32″W / 34.8657°N 84.5921°W / 34.8657; -84.5921 • elevation~ 2,400 feet (730 m)[1] MouthOostanaula River • locationCalhoun, GA • coordinates34°32′37″N 84°54′10″W / 34.5435°N 84.9027°W / 34.5435; -84.9027 • el...

2003 EP by PariaThe Torn InstancesEP by PariaReleased2003GenreExperimental metal, grindcoreLength21:37LabelImagine It Records (II002)[1]Paria chronology The Torn Instances(2003) Misanthropos(2004) The Torn Instances is the debut EP by American experimental metal band Paria. It was released in 2003 by Imagine It Records. Based on the strength of the EP, the band was signed to Black Market Activities (with distribution through Metal Blade Records) and co-released their debut ful...

 

 

Main Street Mallow (Mala, Magh Ealla atau sejumlah varian dalam sejumlah dialek bahasa Irlandia). Magh Ealla berarti daratan angsa dalam bahasa Irlandia. Mala adalah Keltifikasi resmi atas Mallow, yang merupakan Anglisisasi atas Magh Ealla. Kota ini terletak di County Cork, Provinsi Munster, bagian selatan Republik Irlandia, dan berpenduduk (termasuk lingkungannya) 10.241 jiwa pada tahun 2006 (8.937 pada tahun 2002). Mallow terletak di perempatan Munster, dan merupakan pusat administratif bag...

 

 

Craig Venter John Craig Venter (lahir 14 Oktober 1946) adalah ahli rekayasa genetika asal Amerika Serikat. Fokus penelitiannya didasarkan pada upaya menciptakan gen baru yang berujung pada kehidupan.[1] Ia berhasil menciptakan kehidupan tiruan untuk kali pertama di laboratoriumnya, setelah melakukan penelitian selama 15 tahun.[2] Unsur-unsur yang menunjang penelitiannya ialah bakteri dan senyawa kimia yang direkayasa.[3] Penciptaan sel buatan itu dilakukan dengan mengh...

04°22′58″S 70°01′51″W / 4.38278°S 70.03083°W / -4.38278; -70.03083 班傑明康斯坦 班傑明康斯坦(葡萄牙語:Benjamin Constant)是巴西的城鎮,位於該國北部,由亞馬遜州負責管轄,始建於1898年1月29日,面積8,793平方公里,2014年人口38,533,人口密度每平方公里4.38人。 參考資料 IBGE website (页面存档备份,存于互联网档案馆) 这是一篇與巴西相關的地理小作品。您可�...

 

 

Камчатский краб Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:РакообразныеКласс:Высшие ракиПодкласс:ЭумалакостракиНа...

 

 

Ninshō (忍性, August 19, 1217 – August 25, 1303 (Kengen July 16 – Kempo July 12)) was a Japanese Shingon Risshu priest during the Kamakura period.[1] His was instrumental in reviving Ritsu Buddhism during this period, as well as establishing facilities to care for invalids.[2] He was criticized by his contemporary Nichiren. Ninshō in Japan He is sometimes called Ninshō Ryōkan (忍性良観), or simply Ryōkan (良観), as well. He was a disciple of Eison (1201 – 1...

日本の政治家木村 禧八郎きむら きはちろう 『わが青年時代』(大蔵省印刷局、1953年)より生年月日 1901年2月2日出生地 日本 東京府(現・東京都)没年月日 (1975-05-13) 1975年5月13日(74歳没)出身校 慶應義塾大学経済学部卒業前職 記者現職 東京都参与所属政党 (日本社会党→)(労働者農民党→)日本社会党 参議院議員選挙区 (全国区→)東京都選挙区当選回数 4回�...

 

 

Part of a series onAnglicanism TheologyChristian theologyAnglican doctrineThirty-nine ArticlesBooks of HomiliesCaroline DivinesChicago–Lambeth QuadrilateralEpiscopal politySacramentsMary Ministry and worshipMinistryMusicEucharistKing James Version (Book of Common Prayer)Liturgical yearChurchmanship (High, Low, Central, Broad)MonasticismSaintsJesus Prayer ChristianityJesus ChristPaulChristian ChurchFirst seven ecumenical councils Background and historyCeltic ChristianityAugustine of Canterbu...