It essentially states that there are arbitrarily large computable gaps in the hierarchy of complexity classes. For any computable function that represents an increase in computational resources, one can find a resource bound such that the set of functions computable within the expanded resource bound is the same as the set computable within the original bound.
The theorem was proved independently by Boris Trakhtenbrot[2] and Allan Borodin.[3][4]
Although Trakhtenbrot's derivation preceded Borodin's by several years, it was not known nor recognized in the West until after Borodin's work was published.
The theorem can be proved by using the Blum axioms without any reference to a concrete computational model, so it applies to time, space, or any other reasonable complexity measure.
For the special case of time complexity, this can be stated more simply as:
for any total computable function such that for all x, there exists a time bound such that .
^Trakhtenbrot, Boris A. (1967). The Complexity of Algorithms and Computations (Lecture Notes). Novosibirsk University.
^Borodin, Allan (1969). "Complexity classes of recursive functions and the existence of complexity gaps". In Fischer, Patrick C.; Ginsburg, Seymour; Harrison, Michael A. (eds.). Proceedings of the 1st Annual ACM Symposium on Theory of Computing, May 5–7, 1969, Marina del Rey, CA, USA. Association for Computing Machinery. pp. 67–78.