GKO-OFZ
|
Read other articles:
Practice of growing and cultivating plants For the cryptographic concept, see Gardening (cryptanalysis). For people who garden, see Gardener. A gardener maintaining topiary in Tulcán, Ecuador Gardening is the process of growing plants for their vegetables, fruits, flowers, herbs, and appearances within a designated space.[1] Gardens fulfill a wide assortment of purposes, notably the production of aesthetically pleasing areas, medicines, cosmetics, dyes, foods, poisons, wildlife habit...
Emaar PropertiesJenisPublikIndustriReal estateDidirikan1997KantorpusatDubai, Uni Emirat ArabTokohkunciJamal Bin Theniyah(pemimpin)Ahmed Jawa(Wakil pemimpinZishan Baig(MD - India)JasaPengembangan properti hunian dan komersialPendapatanUS$8,5 MiliarKaryawan6,600AnakusahaEmaar Developments, Memaar Building Systems, Emaar International, Emaar Hospitality, Emaar Malls, Emaar Hotels & Resorts, Emaar Retail, Emaar Community Management, Emaar Technologies, Emaar Industries and Investment, OBC El-...
Chronologies Données clés 1812 1813 1814 1815 1816 1817 1818Décennies :1780 1790 1800 1810 1820 1830 1840Siècles :XVIIe XVIIIe XIXe XXe XXIeMillénaires :-Ier Ier IIe IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...
Article 4 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature IIIe législature de la Quatrième République française Gouvernement Charles de Gaulle (3e) Promulgation 4 octobre 1958 Publication 5 octobre 1958 Entrée en vigueur 5 octobre 1958 Article 3 Article 5 modifier L'article 4 de la Constitution de la cinquième République française fait partie du ...
Head of Government of Serbia President of the Government of SerbiaПредседник Владе СрбијеPredsednik Vlade SrbijeCoat of arms of SerbiaFlag of SerbiaIncumbentMiloš VučevićActing since 3 April 2024Government of SerbiaStyleHis ExcellencyTypeHead of governmentMember ofGovernmentSeatNemanjina Street 11NominatorThe PresidentAppointerNational AssemblyTerm lengthNo term limitFormation27 August 1805First holderMateja NenadovićUnofficial namesPrime ministerDeputyFirst...
Building in Manhattan, New York United States Custom House (Manhattan) redirects here. For a general history of the former New York Custom House, see United States Custom House (New York City). United States historic placeAlexander Hamilton U.S. Custom HouseU.S. National Register of Historic PlacesU.S. National Historic LandmarkU.S. Historic districtContributing propertyNew York State Register of Historic PlacesNew York City Landmark No. 0020, 1022 The northern (left) and western (r...
American basketball coach Marianne StanleyPersonal informationBorn (1954-04-29) April 29, 1954 (age 69)Yeadon, Pennsylvania, U.S.Career informationHigh schoolArchbishop Prendergast(Drexel Hill, Pennsylvania)CollegeImmaculata (1972–1976)PositionHead coachCoaching career1977–presentCareer historyAs coach:1977–1987Old Dominion1987–1989Penn1989–1993USC1995–1996Stanford1996–2000California2000Los Angeles Sparks (assistant)2001Washington Mystics (assistant)2002–2003Washington My...
Christopher Coons Portrait officiel de Chris Coons (2011). Fonctions Sénateur des États-Unis En fonction depuis le 15 novembre 2010(13 ans, 4 mois et 29 jours) Élection 2 novembre 2010 Réélection 4 novembre 20143 novembre 2020 Circonscription Delaware Législature 111e, 112e, 113e, 114e, 115e, 116e, 117e et 118e Groupe politique Démocrate Prédécesseur Ted Kaufman Biographie Nom de naissance Christopher Andrew Coons Date de naissance 9 septembre 1963 (60 ans) Lieu ...
His ExcellencyMarcus Stephen Presiden NauruMasa jabatan19 Desember 2007 – 10 November 2011PendahuluLudwig ScottyPenggantiFreddie Pitcher Informasi pribadiLahir1 Oktober 1969 (umur 54)Sunting kotak info • L • B Marcus Stephen (lahir 1 Oktober 1969[1]) adalah Presiden Republik Nauru saat ini, menempati kantornya pada Desember 2007. Ia juga bekas seorang atlet angkat beban terkenal, pemenang tujuh medali emas dan lima perak di Commonwealth Games,[2] ...
Neighborhood of Chittagong, Bangladesh Faujdarhat Railway Station Faujdarhat is a neighborhood of Chittagong City in Bangladesh. It is well known as a ship breaking area, with one of the largest breaking yards in the world: Chittagong Ship Breaking Yard. There are several institutions including Faujdarhat Cadet College, the first cadet college in Bangladesh.[1] History In 1995, the Forest Department created a 5 square kilometres (1.9 sq mi) mangrove forest park that stretche...
Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Foot Ball Club Unione Venezia. Associazione Calcio VeneziaStagione 1968-1969Sport calcio Squadra Venezia Allenatore Carlo Alberto Quario Presidente Bruno Bigatton Serie C11º posto nel girone A. Maggiori presenzeCampionato: Bellinazzi (35) Miglior marcatoreCampio...
2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)...
Low brickwork arch A Catalan vault in a house in Barcelona The Catalan vault (Catalan: volta catalana), also called thin-tile vault,[1] Catalan turn, Catalan arch, boveda ceiling (Spanish bóveda 'vault'), or timbrel vault, is a type of low brickwork arch forming a vaulted ceiling that often supports a floor above. It is constructed by laying a first layer of light bricks lengthwise in space, without centering or formwork, and has a much gentler curve than most other methods of constr...
US-based religious and political organization For other groups of similar name, see Fellowship (disambiguation) § Religion. Not to be confused with The Family International. Fellowship FoundationNicknameThe FamilyFormationApril 1935 (89 years ago) (1935-04)FounderAbraham VereideFounded atSeattle, WashingtonTypenonprofitTax ID no. 53-0204604Legal status501(c)(3)[1]Headquarters 2145 N 24th St Arlington, Virginia 22207-4960 United States PresidentKatherine CraneA...
Paul Joseph LaCamera (lahir 4 September 1963) adalah seorang jenderal bintang empat dan perwira infanteri Angkatan Darat Amerika Serikat yang menjabat sebagai komandan Komando Perserikatan Bangsa-Bangsa, Komando Pasukan Gabungan ROK/AS, dan Pasukan Amerika Serikat di Korea sejak 2 Juli 2021. LaCamera terakhir menjabat sebagai panglima Angkatan Darat Amerika Serikat Pasifik dari 18 November 2019 hingga 3 Juni 2021. Sebelumnya ia menjabat sebagai panglima Korps Lintas Udara XVIII. Penugas...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (March 2020) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unso...
قسم إداري في لندنمعلومات عامةصنف فرعي من أحياء إنجلتراأقسام إدارية البداية 1 أبريل 1965 البلد المملكة المتحدة تقع في التقسيم الإداري لندن الكبرى الكمية 32 (1965) تعديل - تعديل مصدري - تعديل ويكي بيانات تحوي هذه المقالة أو هذا القسم ترجمة آلية. فضلًا، ساهم في تدقيقها وتحسينها أو إ�...
In algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X (understood to be irreducible) is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism. Normal varieties were introduced by Zariski (19...
李敬元[1]이경원基本資料代表國家/地區 韩国出生 (1980-01-21) 1980年1月21日(44歲)[2] 韩国慶尚南道馬山市身高1.60米(5英尺3英寸)[2]體重56公斤(123英磅)[2]主項:女子双打、混合双打世界冠軍頭銜 尤伯杯:1職業戰績61勝–35負(女單)359勝–124負(女双)7勝–8負(混双)現時世界排名已經退役BWF id8245官方檔案链接BWF TournamentsoftwareBWF Fansites�...
Type of discrimination based on weight The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (November 2018) (Learn how and when to remove this message) Part of a series onDiscrimination Forms Institutional Structural Statistical Taste-based Attributes Age Caste Class Dialect Disability Genetic Hair textur...