Fundamental theorem on homomorphisms

In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism.

The homomorphism theorem is used to prove the isomorphism theorems. Similar theorems are valid for vector spaces, modules, and rings.

Group-theoretic version

Diagram of the fundamental theorem on homomorphisms, where is a homomorphism, is a normal subgroup of and is the identity element of .

Given two groups and and a group homomorphism , let be a normal subgroup in and the natural surjective homomorphism (where is the quotient group of by ). If is a subset of (where represents a kernel) then there exists a unique homomorphism such that .

In other words, the natural projection is universal among homomorphisms on that map to the identity element.

The situation is described by the following commutative diagram:

is injective if and only if . Therefore, by setting , we immediately get the first isomorphism theorem.

We can write the statement of the fundamental theorem on homomorphisms of groups as "every homomorphic image of a group is isomorphic to a quotient group".

Proof

The proof follows from two basic facts about homomorphisms, namely their preservation of the group operation, and their mapping of the identity element to the identity element. We need to show that if is a homomorphism of groups, then:

  1. is a subgroup of .
  2. is isomorphic to .

Proof of 1

The operation that is preserved by is the group operation. If , then there exist elements such that and . For these and , we have (since preserves the group operation), and thus, the closure property is satisfied in . The identity element is also in because maps the identity element of to it. Since every element in has an inverse such that (because preserves the inverse property as well), we have an inverse for each element in , therefore, is a subgroup of .

Proof of 2

Construct a map by . This map is well-defined, as if , then and so which gives . This map is an isomorphism. is surjective onto by definition. To show injectiveness, if , then , which implies so .

Finally,

hence preserves the group operation. Hence is an isomorphism between and , which completes the proof.

Applications

The group theoretic version of fundamental homomorphism theorem can be used to show that two selected groups are isomorphic. Two examples are shown below.

Integers modulo n

For each , consider the groups and and a group homomorphism defined by (see modular arithmetic). Next, consider the kernel of , , which is a normal subgroup in . There exists a natural surjective homomorphism defined by . The theorem asserts that there exists an isomorphism between and , or in other words . The commutative diagram is illustrated below.

N / C theorem

Let be a group with subgroup . Let , and be the centralizer, the normalizer and the automorphism group of in , respectively. Then, the theorem states that is isomorphic to a subgroup of .

Proof

We are able to find a group homomorphism defined by , for all . Clearly, the kernel of is . Hence, we have a natural surjective homomorphism defined by . The fundamental homomorphism theorem then asserts that there exists an isomorphism between and , which is a subgroup of .

See also

References

  • Beachy, John A. (1999), "Theorem 1.2.7 (The fundamental homomorphism theorem)", Introductory Lectures on Rings and Modules, London Mathematical Society Student Texts, vol. 47, Cambridge University Press, p. 27, ISBN 9780521644075
  • Grove, Larry C. (2012), "Theorem 1.11 (The Fundamental Homomorphism Theorem)", Algebra, Dover Books on Mathematics, Courier Corporation, p. 11, ISBN 9780486142135
  • Jacobson, Nathan (2012), "Fundamental theorem on homomorphisms of Ω-algebras", Basic Algebra II, Dover Books on Mathematics (2nd ed.), Courier Corporation, p. 62, ISBN 9780486135212
  • Rose, John S. (1994), "3.24 Fundamental theorem on homomorphisms", A course on Group Theory [reprint of the 1978 original], Dover Publications, Inc., New York, pp. 44–45, ISBN 0-486-68194-7, MR 1298629

Read other articles:

Zhou TongZhou Tong sedang memegangi jenggotnyaGuru dari sang Jendral Perang Yue FeiBahasa Tionghoa周同 (bersejarah)周侗 (fiksi)Hanyu PinyinZhōu TóngWade-GilesChou T'ungBahasa KantonJau1 Tung4Jau1 Dung6Panggilan fiksionalLengan Baja[1][2][3]Bahasa Tionghoa Sederhana铁臂膀Bahasa Tionghoa Tradisional鐵臂膀Hanyu PinyinTiě Bèi BǎngWade-GilesT'ieh Pei PangBahasa KantonTit3 Bei3 Bong2Tit3 Bei3 Pong4 Zhou (atau Jow) Tong (Hanzi: 周同 dan 周侗; pinyin: Zh...

 

 

Former Catholic sisters' college in St. Louis, Missouri, United States 38°42′07″N 90°18′26″W / 38.701860°N 90.307218°W / 38.701860; -90.307218 Marillac College was a Catholic sisters' college in St. Louis, Missouri. Like other sisters' colleges, it was dedicated to the education of future nuns and other religious workers, though it was also open to members of the laity. It closed in 1974. Description Operated by the Daughters of Charity, the college was nam...

 

 

Cet article est une ébauche concernant un groupe de musique néerlandais. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. De Spelbrekers De Spelbrekers en 1962 lors de la sélection nationale néerlandaise pour l'Eurovision Nationaal Songfestival 1962.Informations générales Pays d'origine Pays-Bas Genre musical Pop, Nederpop, rock Années actives 1945 - 1975 Labels Telefunken, Decca Composition du groupe Anci...

Weapons of mass destruction By type Biological Chemical Nuclear Radiological By country Albania Algeria Argentina Australia Brazil Bulgaria Canada China Egypt France Germany India Iran Iraq Israel Italy Japan Libya Mexico Myanmar Netherlands North Korea Pakistan Philippines Poland Rhodesia Romania Russia (Soviet Union) Saudi Arabia South Africa South Korea Spain Sweden Switzerland Syria Taiwan Ukraine United Kingdom United States Proliferation Chemical Nuclear Missiles Treaties List of treat...

 

 

2022 South Korean television series Good JobPromotional posterHangul굿잡Revised RomanizationGutjap Genre Mystery[1] Fantasy[1] Romance[1] Created byRyu Seung-jin[2]Developed byKT Studio Genie (planning)[3]Written by Kim Jeong-ae[4] Kwon Hee-kyung[4] Directed by Kang Min-gu[4] Kim Seong-jin[4] StarringJung Il-wooKwon Yu-riMusic byBaek Eun-wooCountry of originSouth KoreaOriginal languageKoreanNo. of episodes12[5]P...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

British explorer, cartographer and naval officer (1728–1779) Captain Cook redirects here. For other uses, see Captain Cook (disambiguation) and James Cook (disambiguation). James CookFRSPortrait by Nathaniel Dance-Holland, c. 1775Born7 November [O.S. 27 October] 1728Marton, Yorkshire, Kingdom of Great BritainDied14 February 1779(1779-02-14) (aged 50)Kealakekua Bay in present-day Hawaii, U.S.NationalityBritishEducationPostgate School, Great AytonOccupation(s)Expl...

 

 

В Википедии есть статьи о других людях с такой фамилией, см. Семашко; Семашко, Николай. Николай Александрович Семашко (не позднее 1922 года) Рождение 8 (20) сентября 1874Ливенская, Елецкий уезд, Орловская губерния, Российская империя Смерть 18 мая 1949(1949-05-18)[1] (74 года)Москва, РСФ...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Giffords Law Center to Prevent Gun ViolenceFormationJuly 1993; 30 years ago (1993-07) (as Legal Community Against Violence)Founded atSan Francisco, California, United StatesType501(c)(3)HeadquartersSan Francisco, California, United StatesKey peopleGabby GiffordsWebsiteGiffords.orgFormerly calledLegal Community Against Violence, Law Center to Prevent Gun Violence The Giffords Law Center to Prevent Gun Violence, previously known as the Legal Community Against Violence and...

 

 

Television station in Miami (1957–1961) Not to be confused with Trenton, New Jersey, radio station WPST. WPST-TVMiami, FloridaUnited StatesChannelsAnalog: 10 (VHF)ProgrammingAffiliationsABC (1957–1961)OwnershipOwnerPublic Service Television, Inc.(National Airlines)HistoryFirst air dateAugust 2, 1957 (1957-08-02)Last air dateNovember 19, 1961 (1961-11-19)(4 years, 109 days)Call sign meaningPublic Service TelevisionTechnical informationERP316 kW[...

 

 

Boxing competitions Boxingat the Games of the XIX OlympiadVenueArena MéxicoDatesOctober 13–26Competitors307 from 65 nations← 19641972 → Boxing at the1968 Summer OlympicsLight flyweightmenFlyweightmenBantamweightmenFeatherweightmenLightweightmenLight welterweightmenWelterweightmenLight middleweightmenMiddleweightmenLight heavyweightmenHeavyweightmenvte The boxing programme of the 1968 Summer Olympics in Mexico City, Mexico was held at the Arena México. Medal...

13th Governor of Plymouth Colony (1673-80) Josiah Winslow13th Governor of Plymouth ColonyIn office1673–1680MonarchCharles IIPreceded byThomas PrenceSucceeded byThomas Hinckley Personal detailsBorn1628Plymouth ColonyDiedDecember 18, 1680 (aged 52)Marshfield, Plymouth ColonySpousePenelope PelhamChildren4Signature Josiah Winslow (c. 1623 in Plymouth Colony – 1680 in Marshfield, Plymouth Colony)[1] was the 13th Governor of Plymouth Colony. In records of the time, historians ...

 

 

Member of a local government council Not to be confused with Counselor. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (January 2018) This article possibly contains original research. Please impr...

 

 

State police of Rhineland-Palatinate The Rhineland-Palatinate State Police is the state police (Landespolizei) of the German federal state of Rhineland-Palatinate and numbers ca. 9,000 police officers. The five regional police authorities are headquartered in Koblenz, Trier, Mainz, Kaiserslautern and Ludwigshafen. The sleeve patch of the Rhineland-Palatinate Police. Just like Hesse, Rhineland-Palatinate abolished the “green star” ranks; meaning Rhineland-Palatinate's police officers will ...

ورم مسخي Teratoma صورة مجهرية لورم مسخي يظهر نسيجا يحتوي على طبقات التبرعم الثلاث: الأديم المتوسط (غضروف غير ناضج - الزاوية العليا اليسرى من الصورة)، الأديم الباطن (غدد هضمية - أسفل وسط الصورة) والأديم الظاهر (البشرة - يمين الصورة).صورة مجهرية لورم مسخي يظهر نسيجا يحتوي على طبقات ...

 

 

British politician Paul MaynardOfficial portrait, 2020Parliamentary Under-Secretary of State for PensionsIn office13 November 2023 – 5 July 2024Prime MinisterRishi SunakPreceded byLaura TrottSucceeded byEmma ReynoldsParliamentary Under-Secretary of State for TransportIn office26 July 2019 – 13 February 2020Prime MinisterBoris JohnsonPreceded byAndrew JonesSucceeded byRachel MacleanIn office16 July 2016 – 9 January 2018Prime MinisterTheresa MayPreceded byClaire...

 

 

Municipality in Mecklenburg-Vorpommern, GermanyDranske MunicipalitySunset at Dranske beach Coat of armsLocation of Dranske within Vorpommern-Rügen district Dranske Show map of GermanyDranske Show map of Mecklenburg-VorpommernCoordinates: 54°37′51″N 13°13′48″E / 54.63083°N 13.23000°E / 54.63083; 13.23000CountryGermanyStateMecklenburg-VorpommernDistrictVorpommern-Rügen Municipal assoc.Nord-Rügen Government • MayorMichael HeeseArea • ...

Teatro del mar Baltico (1914-1918)parte delle operazioni navali nella prima guerra mondialeLa corazzata russa Slava affonda al termine della battaglia dello stretto di Muhu.Dataagosto 1914 - aprile 1918 LuogoMar Baltico EsitoTrattato di Brest-Litovskresa delle forze russe Schieramenti Russia Regno Unito Germania Comandanti Nikolai Essen Vasily Kanin Adrian NepeninEnrico di Prussia Voci di battaglie presenti su Wikipedia Manuale V · D · MFronte orientale191...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 50° خط عرض 50 جنوب خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من ك...