Function problem

In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'.

Formal definition

A functional problem is defined by a relation over strings of an arbitrary alphabet :

An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.

A promise function problem is allowed to do anything (thus may not terminate) if no such exists.

Examples

A well-known function problem is given by the Functional Boolean Satisfiability Problem, FSAT for short. The problem, which is closely related to the SAT decision problem, can be formulated as follows:

Given a boolean formula with variables , find an assignment such that evaluates to or decide that no such assignment exists.

In this case the relation is given by tuples of suitably encoded boolean formulas and satisfying assignments. While a SAT algorithm, fed with a formula , only needs to return "unsatisfiable" or "satisfiable", an FSAT algorithm needs to return some satisfying assignment in the latter case.

Other notable examples include the travelling salesman problem, which asks for the route taken by the salesman, and the integer factorization problem, which asks for the list of factors.

Relationship to other complexity classes

Consider an arbitrary decision problem in the class NP. By the definition of NP, each problem instance that is answered 'yes' has a polynomial-size certificate which serves as a proof for the 'yes' answer. Thus, the set of these tuples forms a relation, representing the function problem "given in , find a certificate for ". This function problem is called the function variant of ; it belongs to the class FNP.

FNP can be thought of as the function class analogue of NP, in that solutions of FNP problems can be efficiently (i.e., in polynomial time in terms of the length of the input) verified, but not necessarily efficiently found. In contrast, the class FP, which can be thought of as the function class analogue of P, consists of function problems whose solutions can be found in polynomial time.

Self-reducibility

Observe that the problem FSAT introduced above can be solved using only polynomially many calls to a subroutine which decides the SAT problem: An algorithm can first ask whether the formula is satisfiable. After that the algorithm can fix variable to TRUE and ask again. If the resulting formula is still satisfiable the algorithm keeps fixed to TRUE and continues to fix , otherwise it decides that has to be FALSE and continues. Thus, FSAT is solvable in polynomial time using an oracle deciding SAT. In general, a problem in NP is called self-reducible if its function variant can be solved in polynomial time using an oracle deciding the original problem. Every NP-complete problem is self-reducible. It is conjectured [by whom?] that the integer factorization problem is not self-reducible, because deciding whether an integer is prime is in P (easy),[1] while the integer factorization problem is believed to be hard for a classical computer. There are several (slightly different) notions of self-reducibility.[2][3][4]

Reductions and complete problems

Function problems can be reduced much like decision problems: Given function problems and we say that reduces to if there exists polynomially-time computable functions and such that for all instances of and possible solutions of , it holds that

  • If has an -solution, then has an -solution.

It is therefore possible to define FNP-complete problems analogous to the NP-complete problem:

A problem is FNP-complete if every problem in FNP can be reduced to . The complexity class of FNP-complete problems is denoted by FNP-C or FNPC. Hence the problem FSAT is also an FNP-complete problem, and it holds that if and only if .

Total function problems

The relation used to define function problems has the drawback of being incomplete: Not every input has a counterpart such that . Therefore the question of computability of proofs is not separated from the question of their existence. To overcome this problem it is convenient to consider the restriction of function problems to total relations yielding the class TFNP as a subclass of FNP. This class contains problems such as the computation of pure Nash equilibria in certain strategic games where a solution is guaranteed to exist. In addition, if TFNP contains any FNP-complete problem it follows that .

See also

References

  1. ^ Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P" (PDF). Annals of Mathematics. 160 (2): 781–793. doi:10.4007/annals.2004.160.781. JSTOR 3597229.
  2. ^ Ko, K. (1983). "On self-reducibility and weak P-selectivity". Journal of Computer and System Sciences. 26 (2): 209–221. doi:10.1016/0022-0000(83)90013-2.
  3. ^ Schnorr, C. (1976). "Optimal algorithms for self-reducible problems". In S. Michaelson and R. Milner, Editors, Proceedings of the 3rd International Colloquium on Automata, Languages, and Programming: 322–337.
  4. ^ Selman, A. (1988). "Natural self-reducible sets". SIAM Journal on Computing. 17 (5): 989–996. doi:10.1137/0217062.
  • Raymond Greenlaw, H. James Hoover, Fundamentals of the theory of computation: principles and practice, Morgan Kaufmann, 1998, ISBN 1-55860-474-X, p. 45-51
  • Elaine Rich, Automata, computability and complexity: theory and applications, Prentice Hall, 2008, ISBN 0-13-228806-0, section 28.10 "The problem classes FP and FNP", pp. 689–694

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Lycoris RecoilKey visualリコリス・リコイル(Rikorisu Rikoiru)PenciptaSpider Lily (original work)[1]Asaura (original story)[1] Seri animeSutradaraShingo AdachiSkenarioAsauraMusikShūhei MutsukiStudioA-1 PicturesPelisensiAniplex ...

French anarchist (1867–1901) Fernand Pelloutier. Fernand-Léonce-Émile Pelloutier (1 October 1867, in Paris – 13 March 1901, in Sèvres) was a French anarchist and syndicalist. He was the leader of the Bourses du Travail,[1] a major French trade union, from 1895 until his death in 1901. He was succeeded by Yvetot. In 1902, the Bourses du Travail merged with the Confédération Générale du Travail. Pelloutier's theories were exceptionally important to the Revolutionary Syndicali...

Colina de Tara Monumento Nacional Coordenadas 53°34′39″N 6°36′43″O / 53.5775, -6.6119444444444Localización administrativaPaís IrlandaDivisión Condado de MeathCaracterísticas generalesAltitud 197 metrosProminencia 180 metrosEra geológica neolíticoMapa de localización Colina de Tara Ubicación en Irlanda. [editar datos en Wikidata] La colina de Tara (en inglés: Hill of Tara, en gaélico: Cnoc na Teamhrach, Teamhair o Teamhair na Rí, La colina de los ...

Діого КарвальюDiogo Carvalho Загальна інформаціяГромадянство  ПортугаліяНародження 26 березня 1988(1988-03-26) (35 років)Коїмбра, ПортугаліяЗріст 181 смВага 72 кгСпортВид спорту спортивне плавання[1] Участь і здобутки Нагороди Чоловіче плавання Представник  Португалія Чем

Tennis bei den Olympischen Sommerspielen 1920 Information Austragungsort Belgien Antwerpen Wettkampfstätte Beerschot Tennis Club Nationen 14 Athleten 75 (52 , 23 ) Datum 16. bis 24. August 1920 Entscheidungen 5 ← Stockholm 1912 Paris 1924 → Olympische Sommerspiele 1920 (Medaillenspiegel Tennis) Platz Mannschaft Total 01 Vereinigtes Konigreich 1801 Großbritannien 2 3 1 6 02 Dritte Französische Republik Frankreich 2 — 2 4 03 Sudafrika 1912 Südafrikanische Unio...

Parc national de RisnjakGéographiePays  CroatieComitat Primorje-Gorski KotarCoordonnées 45° 25′ 59″ N, 14° 27′ 59″ EVille proche DelniceSuperficie 64 km2AdministrationType Parc nationalCatégorie UICN IIWDPA 2518Création 15 septembre 1953Site web www.risnjak.hrLocalisation sur la carte de Croatiemodifier - modifier le code - modifier Wikidata Le parc national de Risnjak est un parc national croate. Il est situé dans les Gorski Kotar, la r�...

Рицький Леонід Леонідович  СолдатЗагальна інформаціяНародження 1989(1989)Таврійськ, Херсонська областьПсевдо «Риба»Військова службаПриналежність  УкраїнаВид ЗС  Збройні силиФормування Війни / битви Війна на сході України Іловайський котелНагороди та відзнаки Ор...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Fevereiro de 2020)  Nota: Para outros significados de Francisco de Portugal, veja Francisco de Portugal (desambiguação). Armas de D. Afonso, 1.º marquês de Valença (Portugal). D. Francisco de Portugal ou Francisco Luís I de Port...

Церква святого Миколая «Пам'яті жертв Чорнобиля» 50°28′31″ пн. ш. 30°28′45″ сх. д. / 50.475333° пн. ш. 30.479361° сх. д. / 50.475333; 30.479361Координати: 50°28′31″ пн. ш. 30°28′45″ сх. д. / 50.475333° пн. ш. 30.479361° сх. д. / 50.475333; 30.479361Тип споруд�...

See also: Point Richmond, Richmond, California This article is about the East Bay city. For the San Francisco neighborhood, see Richmond District, San Francisco. City in California, United StatesRichmondCityAerial view of RichmondPoint RichmondHotel CarquinezRichmond-San Rafael BridgeRichmond Ferry Terminal SealMotto(s): The City of Pride and PurposeLocation in Contra Costa CountyRichmondLocation in the United StatesShow map of San Francisco Bay AreaRichmondRichmond (California)Show map ...

Евоки: Битва за ЕндорEwoks: The Battle For Endor Жанр фентезі, сімейний, пригодницькийРежисер Джим УітКен УітПродюсер Джордж ЛукасТомас Дж.СмітСценарист Джим УітКен УітДжордж Лукас (сюжет)У головних ролях Уілфорд БрімліОбрі МіллерУорвік ДевісЕрік ВокерОператор Isidore MankofskydКомпозит...

Theory of capitalism and globalization Economic imperialism redirects here. For expansion of the applications of economic analysis, see Economics imperialism. Part of a series aboutImperialism studies Theories Dependency theory Intercommunalism Neo-Gramscianism Neocolonialism Social imperialism Super-imperialism Three Worlds Theory Ultra-imperialism World-systems theory Concepts Ecologically unequal exchange North–South model Unequal exchange Superprofit Uneven and combined development Peop...

1943 film The Big NumberDirected byKarl AntonWritten byKarl Anton Erwin Biswanger Alexander Lix Harry Piel Felix von EckardtProduced byKarl AntonStarringLeny Marenbach Maly Delschaft Paul HoffmannCinematographyGeorg Bruckbauer Walter RoßkopfEdited byElise LustigMusic byFriedrich SchröderProductioncompanyTobis FilmDistributed byDeutsche FilmvertriebsRelease date8 January 1943Running time98 minutesCountryGermanyLanguageGerman The Big Number or The Big Act (German: Die große Nummer) is a 1943...

List of popular songs This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Billboard Year-End Hot 100 singles of 2012 – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remove this template message) Gotye's single, Somebody That I Used to Know, came in at number one, spending a total of 8 weeks at number one throughout the y...

Wiesław Edward Bończa-Tomaszewski Fotografia z sierpnia 1931 Data i miejsce urodzenia 26 lutego 1903 Warszawa Zawód, zajęcie dziennikarz-dyplomata Odznaczenia Multimedia w Wikimedia Commons Wiesław Edward Bończa-Tomaszewski (ur. 26 lutego 1903 w Warszawie, zm.?) – polski oficer, dziennikarz-dyplomata, heraldyk i falerysta. Życiorys Syn Aleksandra i Wacławy z d. Rucińskiej. Od 13. roku życia należał do harcerstwa. W 1917 wstąpił do Polskiej Organizacji Wojskowej, a późni...

La Plaza Nueva de Cracovia (en polaco Plac Nowy) popularmente conocida como la Judía, por estar en el distrito de Kazimierz, es una plaza creada por las calles Estery, Izaaka, Nowa, Rabina Mieselsa y Waschauera. Vista general de la Plaza Nueva, con la rotonda en el centro La forma actual de la plaza se estableció en los proyectos de 1808 y 1844. La plaza consiste en un trapecio rectángulo, en cuyo centro encontramos el principal edificio, en forma de rotonda, y alrededor de este una serie ...

2021 single by Lil Uzi Vert Demon HighSingle by Lil Uzi VertReleasedOctober 29, 2021GenrePop rapemo rap[1]trap[1]Length3:17LabelAtlantic Generation Now Songwriter(s) Symere Woods Ryan Vojtesak Masamune Kudo Andrew Franklin Producer(s) Charlie Handsome Rex Kudo Pro Logic Lil Uzi Vert singles chronology V12 (2021) Demon High (2021) Bbycakes (2022) Music videoDemon High on YouTube Demon High is a song by American rapper Lil Uzi Vert, released on October 29, 2021. Produced by Char...

See also: History of Hamilton, Ontario and List of Royal visits to Hamilton, Ontario Below is a timeline of events in Hamilton, Ontario, Canada. Joseph Brant, 1786 Before 1800 According to all records from local historians, this district was inhabited by the Neutral Indians who called it ATTIWANDARONIA. [1] 1616 – Like most of the Americas south of the tree line, the original inhabitants of the Hamilton area were Indigenous peoples. The first European to visit what is now Hamilton w...

Species of bird Nightingale redirects here. For other uses, see Nightingale (disambiguation). Common nightingale Song Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: Muscicapidae Genus: Luscinia Species: L. megarhynchos Binomial name Luscinia megarhynchosBrehm, 1831 Range of L. megarhynchos  Breeding   Non-breeding The common nightingale...

Vendeuvre-du-Poitou Entidad subnacional Vendeuvre-du-PoitouLocalización de Vendeuvre-du-Poitou en Francia Coordenadas 46°44′08″N 0°18′34″E / 46.735555555556, 0.30944444444444Entidad Comuna de Francia y Comuna delegada • País  Francia • Región Nueva Aquitania • Departamento Vienne • Distrito Poitiers • Cantón Jaunay-Clan • Mancomunidad Comunidad de comunas del Alto Poitou • Comuna Saint-Martin-la-PalluAlcalde d...