Frankie Dunlop
|
Read other articles:
Cannucce in plastica La cannuccia è uno strumento usato per bere. È un tubicino che permette di sorbire le bevande senza mettere le labbra a contatto con il contenitore.[1] Attualmente vista la necessità di eliminare la plastica si adottano alternative di diversi materiali come la carta, il bambù, l'acciaio, il rame e la pasta.[2][3][4] Le prime attestazioni si ritrovano già nei sigilli sumerici del terzo millennio a.C.[2], che mostrano diverse per...
Halaman ini berisi artikel tentang naga dalam agama Hindu dan Buddha. Untuk naga secara umum, lihat Naga. Naga (mitologi India)Patung nāga di Bhuvanesvar, India.Makhluk mitologisNama lainNāgī atau Nāginī (nāga betina)KelompokMakhluk legendaSubkelompokDewa air, dewa penuntun, dewa ularAsalMitologiHindu, Buddha, dan JainaNegaraIndia, NepalDaerahAsia Selatan dan Asia TenggaraHabitatDunia bawah tanah, danau, sungai, kolam, hutan larangan dan gua Dalam kepercayaan Hindu, Buddha dan Jaina, N�...
American actor and comedian (1977–2021) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (August 2023) Dustin DiamondDiamond in October 2012BornDustin Neil Diamond(1977-01-07)January 7, 1977San Jose, California, U.S.DiedFebruary 1, 2021(2021-02-01) (aged 44)Cape Coral, Florida, U.S.Occupations Actor director comedian Years active1987–2...
Veikkausliiga 2020 Competizione Veikkausliiga Sport Calcio Edizione 111ª Organizzatore SPL/FBF Date dal 1º luglio 2020al 4 novembre 2020 Luogo Finlandia Partecipanti 12 Formula due fasi Sito web Veikkausliiga Risultati Vincitore HJK(30º titolo) Retrocessioni TPSRoPS Statistiche Miglior marcatore Roope Riski (16) Incontri disputati 132 Gol segnati 372 (2,82 per incontro) Cronologia della competizione 2019 2021 Manuale HIFKHJK Inter TurkuTPS Haka SJK KuPS Lahti IFK M...
Questa voce o sezione sull'argomento imprenditori austriaci non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Collage di Mateschitz Dietrich Mateschitz (Sankt Marein im Mürztal, 20 maggio 1944 – Salisburgo, 22 ottobre 2022[1]) è stato un imprenditore austriaco, miliardario e cofondatore della nota casa produttrice della bevanda energetica Red B...
Spanish footballer In this Spanish name, the first or paternal surname is Nadal and the second or maternal family name is Homar. Miguel Ángel Nadal Nadal in 2016Personal informationFull name Miguel Ángel Nadal Homar[1]Date of birth (1966-07-28) 28 July 1966 (age 57)[1]Place of birth Manacor, Spain[1]Height 1.87 m (6 ft 2 in)[1]Position(s) Defender, midfielderYouth career1980–1983 ManacorSenior career*Years Team Apps (Gls)1983–1...
Tertiary arts school in Hong Kong The Hong Kong Academy for Performing Arts香港演藝學院The Main Campus of The Hong Kong Academy for Performing Arts in Wan Chai, Hong Kong in October 2018TypePublicEstablished1984; 40 years ago (1984)ChairmanMr. Charles Yang Chuen-liang BBS JPChancellorJohn Lee Ka-chiu (as Chief Executive of Hong Kong)[1]DirectorProfessor Gillian ChoaUndergraduates790[2]Postgraduates141[2]Other students1130[2]LocationNo. 1...
Austrian-American singer (1861–1936) Ernestine Schumann-HeinkBornErnestine Amalie Pauline Rössler(1861-06-15)15 June 1861Libeň, Kingdom of Bohemia, Austrian EmpireDied17 November 1936(1936-11-17) (aged 75)Hollywood, California, United StatesOther namesTina RösslerSpouses Johann Georg Ernst August Heink (m. 1882–1893) Curt Paul Schumann, c. (m. 1895–1905) Wil...
Black RockPoster rilis teatrikalSutradaraKatie AseltonProduserAdele RomanskiDitulis olehMark DuplassPemeranKatie AseltonLake BellKate BosworthPenata musikBen LovettSinematograferHillary SperaPenyuntingJacob VaughanPerusahaanproduksiSubmarine EntertainmentDistributorLD EntertainmentTanggal rilis 21 Januari 2012 (2012-01-21) (Sundance) 17 Mei 2013 (2013-05-17) (Amerika Serikat)[1] Durasi80 menit[2]NegaraAmerika SerikatBahasaInggris Black Rock adalah sebua...
Soviet Russian diplomat and statesman (1919–2010) In this name that follows Eastern Slavic naming customs, the patronymic is Fyodorovich and the family name is Dobrynin. Anatoly DobryninАнатолий ДобрынинDobrynin in 1977Head of the International Department of the Central CommitteeIn office6 March 1986 – 30 September 1988Preceded byBoris PonomarevSucceeded byValentin FalinAmbassador of the Soviet Union to the United StatesIn office4 January 1962 – 19 ...
Abrahamic prophet For other uses, see Moses (disambiguation). ProphetMosesמֹשֶׁהMoses with the Tablets of the Law (1624), by Guido ReniBornGoshen, Lower Egypt, Ancient EgyptDiedMount Nebo, Moab, TransjordanNationalityEgyptianIsraeliteKnown forMost important prophet in JudaismMajor prophet in Christianity, Islam, Baháʼí Faith, Druze Faith, Rastafari, and SamaritanismSpouse(s)ZipporahUnnamed Cushite woman [he][1]Children Gershom Eliezer Parents Amram (father) ...
Survivor Series 2007Logo officiel de Survivor Series 2007Main event Batista contre The UndertakerThème musical Tick Tick Boom de The HivesInformationsFédération World Wrestling EntertainmentDivision Raw, SmackDown et ECWDate 18 novembre 2007Spectateurs 12 500[1] personnesLieu American Airlines ArenaVille(s) Miami (Floride), États-UnisChronologie des événementsCyber Sunday (2007)Armageddon (2007)Chronologie des Survivor SeriesSurvivor Series (2006)Survivor Series (2008)modifier - m...
Pour un article plus général, voir Élections municipales de 2020 dans le Nord. 2014 2026 Élections municipales françaises de 2020 à Lille Maire de Lille 15 mars 2020 et 28 juin 2020 Type d’élection Élection municipale Postes à élire 61 conseillers municipaux Corps électoral et résultats Population 232 787 Inscrits 124 454 Votants au 1er tour 40 592 32,62 % 14,8 Votes exprimés au 1er tour 39 703 Votes blancs au 1er tour 539 Votes nul...
ToscanosShown within SpainLocationVélez, SpainRegionAndalusiaCoordinates36°44′27″N 4°6′59″W / 36.74083°N 4.11639°W / 36.74083; -4.11639Part ofPhoenician coloniesHistoryFounded8th century BCSatellite ofPhoenicia, Carthage Toscanos (in Spanish Cortijo de Los Toscanos) is the name of an Andalusian cortijo near Vélez-Málaga in southern Spain,[1] and was the location of an early Phoenician settlement.[2][3][4 ...
Cette page concerne l'année 1442 du calendrier julien. Chronologies Le pape Célestin III concédant le privilège d'autonomie à l'hôpital, détail d'une fresque de Domenico di Bartolo. Sala del Pellegrinaio (salle du Pèlerin), Hôpital Santa Maria della Scala. la peinture en 1442 sur CommonsDonnées clés 1439 1440 1441 1442 1443 1444 1445Décennies :1410 1420 1430 1440 1450 1460 1470Siècles :XIIIe XIVe XVe XVIe XVIIeMillénaires :-Ier...
Ne doit pas être confondu avec Pont-l'Évêque. Pont-Évêque La mairie, place Claude-Barbier. Blason Administration Pays France Région Auvergne-Rhône-Alpes Département Isère Arrondissement Vienne Intercommunalité Vienne Condrieu Agglomération Maire Mandat Martine Faïta 2020-2026 Code postal 38780 Code commune 38318 Démographie Gentilé Episcopontains Populationmunicipale 5 466 hab. (2021 ) Densité 624 hab./km2 Géographie Coordonnées 45° 31′ 52″ ...
ろくだいめ なかむら かんくろう六代目 中村 勘九郎 第149回天皇賞表彰式にて(2014年5月) 屋号 中村屋 定紋 角切銀杏 生年月日 (1981-10-31) 1981年10月31日(42歳) 本名 波野雅行[1][2] 襲名歴 1. 二代目中村勘太郎[3]2. 六代目中村勘九郎 [2][4][5][6][7] 出身地 日本・東京都[2] 曽祖父 三代目中村歌六(父方の父方)六代目尾上�...
凡例大江 匡房 大江匡房肖像(菊池容斎画)時代 平安時代後期生誕 長久2年(1041年)死没 天永2年11月5日(1111年12月7日)別名 江帥(号)、江大府卿、江都督官位 正二位・大蔵卿主君 後冷泉天皇→後三条天皇→白河天皇→堀河天皇→鳥羽天皇氏族 大江氏父母 父:大江成衡、母:橘孝親の娘妻 藤原重経の娘子 隆兼、維順養子:広房、有元[1]テンプレートを表�...
Field theory in physics that aims to unify the fundamental forces and particles Unified theory redirects here. For the band, see Unified Theory (band).Not to be confused with Grand Unified Theory. In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to modern discoveries in physics, forces are not transmitted directl...
Existence and cardinality of models of logical theories In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ, and that no first-order theory with an infinite model can have a unique model up to isomorphism...