Fourier–Motzkin elimination

Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions.

The algorithm is named after Joseph Fourier[1] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

Elimination

The elimination of a set of variables, say V, from a system of relations (here linear inequalities) refers to the creation of another system of the same sort, but without the variables in V, such that both systems have the same solutions over the remaining variables.

If all variables are eliminated from a system of linear inequalities, then one obtains a system of constant inequalities. It is then trivial to decide whether the resulting system is true or false. It is true if and only if the original system has solutions. As a consequence, elimination of all variables can be used to detect whether a system of inequalities has solutions or not.

Consider a system of inequalities with variables to , with the variable to be eliminated. The linear inequalities in the system can be grouped into three classes depending on the sign (positive, negative or null) of the coefficient for .

  • those inequalities that are of the form ; denote these by , for ranging from 1 to where is the number of such inequalities;
  • those inequalities that are of the form ; denote these by , for ranging from 1 to where is the number of such inequalities;
  • those inequalities in which plays no role, grouped into a single conjunction .

The original system is thus equivalent to

.

Elimination consists in producing a system equivalent to . Obviously, this formula is equivalent to

.

The inequality

is equivalent to inequalities , for and .

We have therefore transformed the original system into another system where is eliminated. Note that the output system has inequalities. In particular, if , then the number of output inequalities is .

Example

Consider the following system of inequalities:[2]: 100–102 

Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.

which gives the 3 inequalities:

Simplifying:

This system uses only 2 variables instead of 3. Examining the coefficient signs for each variable yields all-positive for y, so we can immediately say that the system is unbounded in y: since all y coefficients are positive and all inequalities are less-than-or-equal, setting y to negative infinity (or any sufficiently large negative number) would satisfy the reduced system, therefore there exist corresponding x and z for the larger systems as well, and there are infinitely many such solutions. E.g. setting y = -1000000, x = 0, z = -2222222 satisfies the original system as well as the reduced ones.

Complexity

Running an elimination step over inequalities can result in at most inequalities in the output, thus naively running successive steps can result in at most , a double exponential complexity. This is due to the algorithm producing many redundant constraints implied by other constraints.

McMullen's upper bound theorem that the number of non-redundant constraints grows as a single exponential.[3] A single exponential implementation of Fourier-Motzkin elimination and complexity estimates are given in.[4]

Linear programming is well-known to give solutions to inequality systems in polynomial time, favoring it over Fourier-Motzkin elimination.

Imbert's acceleration theorems

Two "acceleration" theorems due to Imbert[5] permit the elimination of redundant inequalities based solely on syntactic properties of the formula derivation tree, thus curtailing the need to solve linear programs or compute matrix ranks.

Define the history of an inequality as the set of indexes of inequalities from the initial system used to produce . Thus, for inequalities of the initial system. When adding a new inequality (by eliminating ), the new history is constructed as .

Suppose that the variables have been officially eliminated. Each inequality partitions the set into :

  • , the set of effectively eliminated variables, i.e. on purpose. A variable is in the set as soon as at least one inequality in the history of results from the elimination of .
  • , the set of implicitly eliminated variables, i.e. by accident. A variable is implicitly eliminated when it appears in at least one inequality of , but appears neither in inequality nor in
  • , all remaining variables.

A non-redundant inequality has the property that its history is minimal.[6]

Theorem (Imbert's first acceleration theorem). If the history of an inequality is minimal, then .

An inequality that does not satisfy these bounds is necessarily redundant, and can be removed from the system without changing its solution set.

The second acceleration theorem detects minimal history sets:

Theorem (Imbert's second acceleration theorem). If the inequality is such that , then is minimal.

This theorem provides a quick detection criterion and is used in practice to avoid more costly checks, such as those based on matrix ranks. See the reference for implementation details.[6]

Applications in information theory

Information-theoretic achievability proofs result in conditions under which the existence of a well-performing coding scheme is guaranteed. These conditions are often described by linear system of inequalities. The variables of the system include both the transmission rates (that are part of the problem's formulation) and additional auxiliary rates used for the design of the scheme. Commonly, one aims to describe the fundamental limits of communication in terms of the problem's parameters only. This gives rise to the need of eliminating the aforementioned auxiliary rates, which is executed via Fourier–Motzkin elimination. However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities). A recently developed open-source software for MATLAB[7] performs the elimination, while identifying and removing redundant inequalities. Consequently, the software's outputs a simplified system (without redundancies) that involves the communication rates only.

Redundant constraint can be identified by solving a linear program as follows. Given a linear constraints system, if the -th inequality is satisfied for any solution of all other inequalities, then it is redundant. Similarly, STIs refers to inequalities that are implied by the non-negativity of information theoretic measures and basic identities they satisfy. For instance, the STI is a consequence of the identity and the non-negativity of conditional entropy, i.e., . Shannon-type inequalities define a cone in , where is the number of random variables appearing in the involved information measures. Consequently, any STI can be proven via linear programming by checking if it is implied by the basic identities and non-negativity constraints. The described algorithm first performs Fourier–Motzkin elimination to remove the auxiliary rates. Then, it imposes the information theoretic non-negativity constraints on the reduced output system and removes redundant inequalities.

See also

  • Farkas' lemma – can be proved using FM elimination.
  • Real closed field – the cylindrical algebraic decomposition algorithm performs quantifier elimination over polynomial inequalities, not just linear.

References

  1. ^ Fourier, Joseph (1827). "Histoire de l'Académie, partie mathématique (1824)". Mémoires de l'Académie des sciences de l'Institut de France. Vol. 7. Gauthier-Villars.
  2. ^ Gärtner, Bernd; Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8. Pages 81–104.
  3. ^ David Monniaux, Quantifier elimination by lazy model enumeration, Computer aided verification (CAV) 2010.
  4. ^ RJ. Jing, M. Moreno-Maza, and D. Talaashrafi [1] Complexity Estimates for Fourier-Motzkin Elimination. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science, vol 12291. Springer,]
  5. ^ Jean-Louis Imbert, About Redundant Inequalities Generated by Fourier's Algorithm, Artificial Intelligence IV: Methodology, Systems, Applications, 1990.
  6. ^ a b Jean-Louis Imbert, Fourier Elimination: Which to Choose?.
  7. ^ Gattegno, Ido B.; Goldfeld, Ziv; Permuter, Haim H. (2015-09-25). "Fourier-Motzkin Elimination Software for Information Theoretic Inequalities". arXiv:1610.03990 [cs.IT].

Further reading


Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Peta yang menunjukkan Garis Schuster Garis Schuster (bahasa Luksemburg: Schuster-Linn) adalah garis pertahanan yang dibentuk oleh pemerintah Luksemburg di perbatasannya dengan Jerman Nazi dan Republik Prancis Ketiga tidak lama sebelum Perang Dunia ...

 

AntarcticaPoster filmSutradaraKoreyoshi KuraharaProduserTomohiro Kaiyama Masaru Kakutani Koretsugo Kurahara Juichi TanakaDitulis olehToshirō Ishidō Koreyoshi Kurahara Tatsuo Nogami Kan SajiPemeranKen Takakura Tsunehiko Watase Eiji Okada Masako NatsumePenata musikVangelisSinematograferAkira ShiizukaPenyuntingKoreyoshi Kurahara Akira SuzukiDistributorNippon Herald Films (Jepang) 20th Century Fox (AS - pengalihan suara)Tanggal rilis 23 Juli 1983 (1983-07-23) Durasi143 menitNegaraJep...

 

Cisleithania (merah) di Austria-Hungaria. Cisleithania (Jerman: Cisleithaniencode: de is deprecated , juga disebut Zisleithanien, bahasa Hongaria: Ciszlajtánia, bahasa Ceska: Předlitavsko, bahasa Slowakia: Predlitavsko, bahasa Polandia: Przedlitawia, Kroasia: Cislajtanijacode: hr is deprecated , bahasa Slovenia: Cislajtanija, bahasa Rumania: Cisleithania, Ukraina: Цислейтанія, transliterasi: Tsysleitàniia) adalah nama yang umum digunakan untuk wilayah...

Election This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1848 Vermont gubernatorial election – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this template message) 1848 Vermont gubernatorial election ← 1847 September 5, 1848 (1848-09-05) 1...

 

Metropolitan Statistical Area in the United StatesGreater St. LouisMetropolitan Statistical AreaSt. Louis, MO–IL Metropolitan Statistical AreaA NASA image of the Greater St. Louis area at night in December 2013Interactive Map of St. Louis–St. Charles–Farmington, MO–IL CSA St. Louis, MO–IL MSA   City of St. Louis   Greater St. Louis (Missouri)   Metro East (Illinois) Other Statistical Areas   Farmington, MO μSA   Centralia, IL μSA ...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

American animator (1910–76) Rod ScribnerScribner, January 1945BornRoderick Henry Scribner[1](1910-10-10)October 10, 1910Joseph, Oregon, U.S.DiedDecember 21, 1976(1976-12-21) (aged 66)Buena Park, California, U.S.Other namesRoderick ScribnerHarry ScribnerOccupationAnimatorYears active1935–1976Employers Warner Bros. Cartoons (1935–1947); [a] (1950–1953[b]) Storyboard/Hubley Studios, Inc. (1955[4]–1956; 1966–1967) UPA (1956) Jay Ward Prod...

 

Protests after the police killing of Winston Boogie Smith, beginning June 2021 For other local events, see List of incidents of civil unrest in Minneapolis–Saint Paul. 2021 Uptown Minneapolis unrestPart of 2020–2023 Minneapolis–Saint Paul racial unrestProtesters in Minneapolis, June 5, 2021DateJune 3 – November 3, 2021 (5 months)LocationMinneapolis, Minnesota, United States44°56′50″N 93°17′48″W / 44.947104°N 93.296784°W / 44.947104; -93.296784C...

 

US military installation in Washington, DC Joint Base Anacostia–BollingSouthwest Washington, D.C. in the United StatesView of Joint Base Anacostia–Bolling from across the Potomac River during 2013.JB Anacostia–BollingLocation in the United StatesCoordinates38°50′34″N 077°00′58″W / 38.84278°N 77.01611°W / 38.84278; -77.01611 (JB Anacostia–Bolling)TypeUS military Joint BaseSite informationOwnerDepartment of DefenseOperatorUS Air ForceCont...

كعكة لسعة النحلمعلومات عامةالمنشأ ألمانيا النوع sheet cake (en) — yeast cake (en) المكونات الرئيسية خمير لوز pastry cream (en) زبدة تعديل - تعديل مصدري - تعديل ويكي بيانات كعكة لسعة النحل أو كعكة القشدة باللوز (بالألمانية: Bienenstich) هي كعكة حلوى ألمانية مصنوعة من عجينة الخميرة الحلوة مع طبقة مخبوز...

 

Esta é uma lista dos governadores das 27 unidades federativas do Brasil durante o mandato 1995-1999.[1] Para efeito de informação foi considerada a extensão dos mandatos originalmente previstos em lei. No caso em tela eles se estenderam de 1º de janeiro de 1995 a 1º de janeiro de 1999. Nesse interregno foi promulgada a Emenda Constitucional nº 16 de 04 de junho de 1997 que instituiu o direito a reeleição para os ocupantes de cargos executivos. Bandeira Unidade federativa Abreviação...

 

.bi

.bi البلد بوروندي  الموقع الموقع الرسمي  تعديل مصدري - تعديل   bi. هو نطاق إنترنت من صِنف مستوى النطاقات العُليا في ترميز الدول والمناطق، للمواقع التي تنتمي لبوروندي.[1][2] مراجع ^ النطاق الأعلى في ترميز الدولة (بالإنجليزية). ORSN [الإنجليزية]. Archived from the original on 2019-05-07....

Place in Manitoba, CanadaMoose LakeNASA image showing the location of Moose LakeCommunity boundariesMoose LakeCoordinates: 53°42′0″N 100°17′59.99″W / 53.70000°N 100.2999972°W / 53.70000; -100.2999972CountryCanadaProvinceManitobaCensus division21RegionNorthern RegionArea[1] • Total1.66 km2 (0.64 sq mi)Elevation260 m (840 ft)Population (2011) • Total1,137 • Density684.4/km2 (1,773/sq&#...

 

الذاكرة المعتمدة على الحالة أو التعلم المعتمد على الحالة هي ظاهرة يكون من خلالها استرجاع الذاكرة أكثر فاعلية عندما يكون الفرد في نفس حالة الوعي التي كان عليها أثناء تكوين الذاكرة.[1][2] يستخدم المصطلح غالباً لوصف استرجاع الذاكرة أثناء وجود الفرد في حالات الوعي التي ...

 

Chinese historian, philosopher, poet and politician (1130–1200) In this Chinese name, the family name is Zhu. Zhu XiBornOctober 18, 1130Youxi, Fujian Circuit, Southern Song dynastyDiedApril 23, 1200(1200-04-23) (aged 69)Occupation(s)Calligrapher, historian, philosopher, poet, politicianEraMedieval philosophyRegionChinese philosophySchoolNeo-Confucianism Chinese nameChinese朱熹TranscriptionsStandard MandarinHanyu PinyinZhū XīBopomofoㄓㄨ ㄒㄧWade–GilesChu1 Hsi1Tongyong Pi...

Highest of four worlds in Kabbalah The Four Worlds in Kabbalah AK Atziluth Beri'ah Yetzirah Assiah vte Atziluth or Atzilut (also Olam Atsiluth, עוֹלָם אֲצִילוּת, literally the World of Emanation) is the highest of four worlds in which exists the Kabbalistic Tree of Life. It is also known as near to God.[1] Beri'ah follows it. It is known as the World of Emanations, or the World of Causes. In the Kabbalah, each of the Sephiroth in this world is associated with a name of ...

 

Questa voce o sezione sull'argomento nobili tedeschi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Konrad Zöllner von RothensteinGran maestro dell'Ordine teutonicoStemma In carica1382 –1390 PredecessoreWinrich von Kniprode SuccessoreKonrad von Wallenrode Morte20 agosto 1390 Luogo di sepolturaCastello di Marienburg Konrad Zöllner von Roth...

 

Disambiguazione – Se stai cercando altri significati, vedi Banca di Grecia (disambigua). Banca di Grecia(EL) Τράπεζα της Ελλάδος Istituita7 dicembre 1927 PresidenteYannis Stournaras (dal 20 giugno 2014) SedeAtene Sito web Modifica dati su Wikidata · Manuale La Banca di Grecia (greco: Τράπεζα της Ελλάδος) è la banca centrale della Grecia e ha sede ad Atene (Venizelos Avenue). Fondata nel 1927, cominciò ad operare ufficialmente nel 1928. Indice 1 Int...

Village in County Wexford, Ireland Village in Leinster, IrelandInch An InisVillageThe church in InchInchLocation in IrelandCoordinates: 52°44′24″N 6°14′17″W / 52.740°N 6.238°W / 52.740; -6.238CountryIrelandProvinceLeinsterCountyCounty WexfordElevation48 m (157 ft)Time zoneUTC+0 (WET) • Summer (DST)UTC-1 (IST (WEST))Irish Grid ReferenceT187669 Inch (Irish: An Inis or Inse Mocholmóg)[1] is located in County Wexford, Ireland on t...

 

Ship of the line of the Royal Navy For other ships with the same name, see HMS Ramillies. Hull plan of HMS Thunderer History Great Britain NameHMS Ramillies Ordered19 June 1782 BuilderRandall, Rotherhithe Laid downDecember 1782 Launched12 July 1785 FateBroken up, February 1850 General characteristics [1] Class and typeCulloden-class ship of the line Tons burthen1677+17⁄94 (bm) Length170 ft 4 in (51.92 m) (gundeck); 139 ft 9 in (42.60 m) (keel) Beam4...