Felix Adalbert Behrend (23 April 1911 – 27 May 1962) was a German mathematician of Jewish descent who escaped Nazi Germany and settled in Australia. His research interests included combinatorics, number theory, and topology. Behrend's theorem and Behrend sequences are named after him.
Life
Behrend was born on 23 April 1911 in Charlottenburg, a suburb of Berlin. He was one of four children of Dr. Felix W. Behrend, a politically liberal mathematics and physics teacher. Although of Jewish descent, their family was Lutheran. Behrend followed his father in studying both mathematics and physics, both at Humboldt University of Berlin and the University of Hamburg, and completed a doctorate in 1933 at Humboldt University.[1][2][3][4] His dissertation, Über numeri abundantes [On abundant numbers] was supervised by Erhard Schmidt.[1][5]
Although both Hardy and J. H. C. Whitehead intervened for an early release, he remained in the prison camps in Australia, teaching mathematics there to the other internees.
After Thomas MacFarland Cherry added to the calls for his release, he gained his freedom in 1942 and began working at the University of Melbourne. He remained there for the rest of the career, and married a Hungarian dance teacher in 1945 in the Queen's College chapel; they had two children.[1][2][3] Although his highest rank was associate professor, Bernhard Neumann writes that "he would have been made a (personal) professor" if not for his untimely death.[2]
He died of brain cancer on 27 May 1962 in Richmond, Victoria, a suburb of Melbourne.[1][2][3]
Contributions
Behrend's work covered a wide range of topics, and often consisted of "a new approach to questions already deeply studied".[3]
He began his research career in number theory, publishing three papers by the age of 23. His doctoral work provided upper and lower bounds on the density of the abundant numbers. He also provided elementary bounds on the prime number theorem, before that problem was solved more completely by Paul Erdős and Atle Selberg in the late 1940s.[3]
He is known for his results in combinatorial number theory, and in particular for Behrend's theorem on the logarithmic density of sets of integers in which no member of the set is a multiple of any other,[6][A] and for his construction of large Salem–Spencer sets of integers with no three-element arithmetic progression.[7][B]Behrend sequences are sequences of integers whose multiples have density one; they are named for Behrend, who proved in 1948 that the sum of reciprocals of such a sequence must diverge.[8][9][C]
He was also the author of a posthumously-published children's book, Ulysses' Father (1962), consisting of a collection of bedtime stories linked through the Greek legend of Sisyphus.[3][4][10]
^Coxeter, H. S. M. (2010), "Cyclic sequences and frieze patterns (the fourth Felix Behrend memorial lecture)", in Lagarias, Jeffrey C. (ed.), The ultimate challenge: the problem, Providence, Rhode Island: American Mathematical Society, pp. 211–217, MR2560712