Entropy of entanglement

The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, it indicates the two subsystems are entangled.

More mathematically; if a state describing two subsystems A and B is a separable state, then the reduced density matrix is a pure state. Thus, the entropy of the state is zero. Similarly, the density matrix of B would also have 0 entropy. A reduced density matrix having a non-zero entropy is therefore a signal of the existence of entanglement in the system.

Bipartite entanglement entropy

Suppose that a quantum system consists of particles. A bipartition of the system is a partition which divides the system into two parts and , containing and particles respectively with . Bipartite entanglement entropy is defined with respect to this bipartition.

Von Neumann entanglement entropy

The bipartite von Neumann entanglement entropy is defined as the von Neumann entropy of either of its reduced states, since they are of the same value (can be proved from Schmidt decomposition of the state with respect to the bipartition); the result is independent of which one we pick. That is, for a pure state , it is given by:

where and are the reduced density matrices for each partition.

The entanglement entropy can be expressed using the singular values of the Schmidt decomposition of the state. Any pure state can be written as where and are orthonormal states in subsystem and subsystem respectively. The entropy of entanglement is simply:

This form of writing the entropy makes it explicitly clear that the entanglement entropy is the same regardless of whether one computes partial trace over the or subsystem.


Many entanglement measures reduce to the entropy of entanglement when evaluated on pure states. Among those are:

Some entanglement measures that do not reduce to the entropy of entanglement are:

Renyi entanglement entropies

The Renyi entanglement entropies are also defined in terms of the reduced density matrices, and a Renyi index . It is defined as the Rényi entropy of the reduced density matrices:

Note that in the limit , The Renyi entanglement entropy approaches the Von Neumann entanglement entropy.

Example with coupled harmonic oscillators

Consider two coupled quantum harmonic oscillators, with positions and , momenta and , and system Hamiltonian

With , the system's pure ground state density matrix is , which in position basis is . Then [2]

Since happens to be precisely equal to the density matrix of a single quantum harmonic oscillator of frequency at thermal equilibrium with temperature ( such that where is the Boltzmann constant), the eigenvalues of are for nonnegative integers . The Von Neumann Entropy is thus

.

Similarly the Renyi entropy .

Area law of bipartite entanglement entropy

A quantum state satisfies an area law if the leading term of the entanglement entropy grows at most proportionally with the boundary between the two partitions. Area laws are remarkably common for ground states of local gapped quantum many-body systems. This has important applications, one such application being that it greatly reduces the complexity of quantum many-body systems. The density matrix renormalization group and matrix product states, for example, implicitly rely on such area laws. [3]

References/sources

  1. ^ Anonymous (2015-10-23). "Entropy of entanglement". Quantiki. Retrieved 2019-10-17.
  2. ^ Entropy and area Mark Srednicki Phys. Rev. Lett. 71, 666 – Published 2 August 1993 arXiv:hep-th/9303048
  3. ^ Eisert, J.; Cramer, M.; Plenio, M. B. (February 2010). "Colloquium: Area laws for the entanglement entropy". Reviews of Modern Physics. 82 (1): 277–306. arXiv:0808.3773. Bibcode:2010RvMP...82..277E. doi:10.1103/RevModPhys.82.277.

Read other articles:

Aero Ae 50 adalah prototipe pesawat baling-baling pengintai militer dibangun di Cekoslovakia. Dirancang dengan peran artileri, Ae 50 adalah pesawat udara desain bersayap sepasang sayap tinggi yang tidak biasa, dengan pesawat yang tiba-tiba dihentikan segera belakang dari awak kabin, meninggalkan tailplane untuk dipasang pada ledakan tunggal yang melekat pada sayap. Tailwheel itu dipasang di bagian belakang badan pesawat. Pengaturan ini telah dimaksudkan untuk memaksimalkan lapangan pengamat p...

 

Aeta beralih ke halaman ini. Untuk Animal Enterprise Terrorism Act, lihat Animal Enterprise Terrorism Act. Anak perempuan Aeta muda asal Mariveles, Bataan, pada 1901. Anak laki-laki Aeta muda dari Kota Iriga, Camarines Sur, pada 2015. Aeta (Ayta /ˈaɪtə/ EYE-tə; Kapampangan: áitâ), atau Agta, adalah sebuah penduduk asli yang tunggal di bagian pegunungan terisolasi di pulau Luzon, Filipina. Suku tersebut dianggap merupakan [[Negrio to]].[1] Referensi ^ The Aeta. peoplesoftheworld....

 

Kudeta Kanton Zhongshan mengeluarkan uap Insiden Zhongshan Hanzi tradisional: 中山艦事件 Hanzi sederhana: 中山舰事件 Makna literal: Insiden Kapal Perang Zhongshan Alih aksara Mandarin - Hanyu Pinyin: Zhōngshān Jiàn Shìjiàn Chiang Kai-shek memimpin Ekspedisi Utara tahun 1926. Sebuah model dari Zhongshan. Musem Kapal Perang Zhongshan di Wuhan. Kapal perang yang diperbaiki. Kudeta Kanton[1] tanggal 20 Maret 1926, juga dikenal sebagai Insiden Zhongshan[2] atau Insi...

Italian footballer Lorenzo Crisetig Crisetig with Inter Milan in 2009Personal informationDate of birth (1993-01-20) 20 January 1993 (age 31)Place of birth Cividale del Friuli, ItalyHeight 1.84 m (6 ft 1⁄2 in)[1]Position(s) MidfielderTeam informationCurrent team PadovaNumber 6Youth career2001–2002 Audace di San Leonardo2002–2007 Donatello2007–2011 Inter MilanSenior career*Years Team Apps (Gls)2011–2012 Inter Milan 0 (0)2012–2014 Parma 0 (0)2012 → I...

 

This article is about the 1978 film. For the 2011 TV series, see The Girl with the Red Scarf (TV series). 1978 Turkish filmThe Girl with the Red ScarfFilm posterDirected byAtıf YılmazWritten byScreenplay:Ali ÖzgentürkNovel:Chinghiz AitmatovProduced byArif KeskinerStarringTürkan ŞorayKadir İnanırİhsan YüceAhmet MekinCinematographyÇetin TuncaMusic byCahit BerkayProductioncompanyÇiçek FilmRelease date 11 November 1978 (1978-11-11) Running time95 minutesCountryTurkeyLa...

 

Homeless advocacy group and newspaper in Portland, Oregon, United States Street RootsA Street Roots salesman with newspapersTypeWeekly alternative newspaperFormatCompactEditorK. Rambo [1]Founded1998 [2]Political alignmentHomeless advocacyHeadquartersPortland, Oregon, U.S.Circulation10,000 (as of 2018)[3]Websitestreetroots.org Street Roots is a Portland, Oregon, United States based homeless advocacy group[4] and a weekly alternative newspaper that covers hom...

Communications satellite Hispasat 30W-4NamesHispasat 1DOperatorHispasatCOSPAR ID2002-044A SATCAT no.27528 Spacecraft propertiesBusSpacebus-3000B2ManufacturerAlcatel SpaceLaunch mass3,250 kgDry mass1,345 kg Start of missionLaunch date18/09/2002RocketAtlas IIASLaunch siteAir Force Eastern Test Range (AFETR) Orbital parametersSemi-major axis42,164 kmPeriapsis altitude35,773.9 kmApoapsis altitude35,813.6 kmInclination2.5°Period1,436.1 minutes   The Hispasat 1D, since 2016 called Hispasat 30...

 

Keuskupan TuticorinDioecesis Tuticorensisதூத்துக்குடி மறைமாவட்டம்Katolik Katedral Hati Kudus, Tuticorin, Gereja Induk KeuskupanLokasiNegaraIndiaProvinsi gerejawiMaduraiDekanat5StatistikLuas6.440 km2 (2.490 sq mi)Populasi- Total- Katolik(per 2010)2.590.000421,820 (16.3%)Paroki111InformasiDenominasiKatolik RomaRitusRitus LatinPendirian12 Juni 1923KatedralKatedral Hati Kudus di ThoothukudiPelindungSanto Fransiskus X...

 

Pierre-Paulin AndrieuUskup Agung BordeauxUskup difoto pada 21 Januari 1907.GerejaGereja Katolik RomaKeuskupan agungBordeauxTakhtaBordeauxPenunjukan2 Januari 1909Masa jabatan berakhir15 Februari 1935PendahuluVictor-Lucien-Sulpice LécotPenerusMaurice FeltinJabatan lainKardinal-Imam Sant'Onofrio (1907-35)ImamatTahbisan imam30 Mei 1874oleh Julien-Florian-Félix DesprezTahbisan uskup25 Juli 1901oleh Jean-Augustin GermainPelantikan kardinal16 Desember 1907oleh Paus Pius XPeringkatKardina...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Radvaň, Banská Bystrica – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this template message) Radvaň (on the left), with the Hron River on the right Radvaň is a borough of Banská Bystrica,[1] located south-...

 

UNESCO World Heritage Site in Osogbo, Nigeria Osun-Osogbo Sacred GroveUNESCO World Heritage SiteFirst Palace In Osun-Osogbo Sacred GrooveLocationOsogbo, NigeriaReference1118Inscription2005 (29th Session)Area75 ha (190 acres)Buffer zone47 ha (120 acres)Coordinates7°45′20″N 4°33′08″E / 7.75556°N 4.55222°E / 7.75556; 4.55222Location of Osun-Osogbo in Nigeria Osun-Osogbo Main Entrance Gate Osun-Osogbo is a sacred grove along the banks of the Osun...

 

1889 musical work by César Franck Franck, by Pierre Petit, 1887 The Symphony in D minor is the best-known orchestral work and the only mature symphony written by the 19th-century composer César Franck. It employs a cyclic form, with important themes recurring in all three movements. After two years of work, Franck completed the symphony on August 22, 1888. It was premiered at the Paris Conservatory on 17 February 1889 under the direction of Jules Garcin. Franck dedicated it to his pupil Hen...

Application of science to healthcare Biomedical science redirects here. Not to be confused with Biomedical research. See also: Biomedicine A biochemist engaged in bench research Biomedical sciences are a set of sciences applying portions of natural science or formal science, or both, to develop knowledge, interventions, or technology that are of use in healthcare or public health.[1] Such disciplines as medical microbiology, clinical virology, clinical epidemiology, genetic epidemiolo...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Jess PhillipsPhillips pada 2019 Menteri Kekerasan Domestik dan Pemanduan Keselamatan BayanganMasa jabatan9 April 2020 – 15 November 2023PemimpinKeir StarmerPendahuluCarolyn Harris (Pemanduan Keselamatan dan Pemakaman)PenggantiPetahanaAnggota Parlemenfor Birmingham YardleyPetahanaMulai menjabat 7 Mei 2015PendahuluJohn HemmingPenggantiPetahanaMayoritas10,659 (25.0%) Informasi pribadiLahirJessica Rose Trainor9 Oktober 1981 (umur 42)Birmingham, InggrisPartai politikBuruhSuami/...

Darius Milhaud in 1923. Below is a list of compositions by Darius Milhaud sorted by category. Operas La brebis égarée, Op. 4 (1910–1914); 3 acts, 20 scenes; libretto by Francis Jammes; premiere 1923 Les euménides, Op. 41 (1917–1923); L'Orestie d'Eschyle (Orestiean Trilogy No. 3); 3 acts; libretto by Paul Claudel after Aeschylus Les malheurs d'Orphée, Op. 85 (1924); chamber opera in 3 acts; libretto by Armand Lunel; premiere 1926 Esther de Carpentras, Op. 89 (1925–1926); opera buffa...

 

نيكوكليا (سيرري) تقسيم إداري البلد اليونان  [1] إحداثيات 40°55′58″N 23°25′40″E / 40.932777777778°N 23.427777777778°E / 40.932777777778; 23.427777777778   السكان التعداد السكاني 470 (resident population of Greece) (2021)816 (resident population of Greece) (2001)805 (resident population of Greece) (1991)737 (resident population of Greece) (2011)  الرمز الجغرافي...

 

Species of shrub Salvia dorrii Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Lamiales Family: Lamiaceae Genus: Salvia Species: S. dorrii Binomial name Salvia dorrii(Kellogg) Abrams[1] Salvia dorrii,[2][3] the purple sage,[2] Dorr's sage, fleshy sage, mint sage, or tobacco sage, is a perennial spreading shrub in the family Lamiaceae. It is native to mountain areas in the western Uni...

  لمعانٍ أخرى، طالع الكنيسة الأثرية (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2023) الكنيسة الأثرية فرنانة تقديم البلد  تونس مدينة فرنانة نوع كنيسة الموقع الجغرافي تعديل مصدري - تعديل   ال�...

 

This article is about the Indiana city. For the adjacent Ohio village, see Union City, Ohio. For other places called Union City, see Union City (disambiguation). City in Indiana, United StatesUnion City, IndianaCityUnion City water tower and skyline FlagLocation of Union City in Randolph County, Indiana.Coordinates: 40°11′58″N 84°49′14″W / 40.19944°N 84.82056°W / 40.19944; -84.82056CountryUnited StatesStateIndianaCountyRandolphTownshipWayneGovernment �...