The Embryophytes emerged either a half-billion years ago, at some time in the interval between the mid-Cambrian and early Ordovician, or almost a billion years ago, during the Tonian or Cryogenian,[15] probably from freshwater charophytes, a clade of multicellular green algae similar to extant Klebsormidiophyceae.[16][17][18][19] The emergence of the Embryophytes depleted atmospheric CO2 (a greenhouse gas), leading to global cooling, and thereby precipitating glaciations.[20] Embryophytes are primarily adapted for life on land, although some are secondarily aquatic. Accordingly, they are often called land plants or terrestrial plants.[citation needed]
On a microscopic level, the cells of charophytes are broadly similar to those of chlorophyte green algae, but differ in that in cell division the daughter nuclei are separated by a phragmoplast.[21] They are eukaryotic, with a cell wall composed of cellulose and plastids surrounded by two membranes. The latter include chloroplasts, which conduct photosynthesis and store food in the form of starch, and are characteristically pigmented with chlorophylls a and b, generally giving them a bright green color. Embryophyte cells also generally have an enlarged central vacuole enclosed by a vacuolar membrane or tonoplast, which maintains cell turgor and keeps the plant rigid.
In common with all groups of multicellular algae they have a life cycle which involves alternation of generations. A multicellular haploid generation with a single set of chromosomes – the gametophyte – produces sperm and eggs which fuse and grow into a diploid multicellular generation with twice the number of chromosomes – the sporophyte which produces haploid spores at maturity. The spores divide repeatedly by mitosis and grow into a gametophyte, thus completing the cycle. Embryophytes have two features related to their reproductive cycles which distinguish them from all other plant lineages. Firstly, their gametophytes produce sperm and eggs in multicellular structures (called 'antheridia' and 'archegonia'), and fertilization of the ovum takes place within the archegonium rather than in the external environment. Secondly, the initial stage of development of the fertilized egg (the zygote) into a diploid multicellular sporophyte, takes place within the archegonium where it is both protected and provided with nutrition. This second feature is the origin of the term 'embryophyte' – the fertilized egg develops into a protected embryo, rather than dispersing as a single cell.[17] In the bryophytes the sporophyte remains dependent on the gametophyte, while in all other embryophytes the sporophyte generation is dominant and capable of independent existence.
Embryophytes also differ from algae by having metamers. Metamers are repeated units of development, in which each unit derives from a single cell, but the resulting product tissue or part is largely the same for each cell. The whole organism is thus constructed from similar, repeating parts or metamers. Accordingly, these plants are sometimes termed 'metaphytes' and classified as the group Metaphyta[22] (but Haeckel's definition of Metaphyta places some algae in this group[23]). In all land plants a disc-like structure called a phragmoplast forms where the cell will divide, a trait only found in the land plants in the streptophyte lineage, some species within their relatives Coleochaetales, Charales and Zygnematales, as well as within subaerial species of the algae order Trentepohliales, and appears to be essential in the adaptation towards a terrestrial life style.[24][25][26][27]
Evolution
The green algae and land plants form a clade, the Viridiplantae. According to molecular clock estimates, the Viridiplantae split 1,200 million years ago to 725 million years ago into two clades: chlorophytes and streptophytes. The chlorophytes, with around 700 genera, were originally marine algae, although some groups have since spread into fresh water. The streptophyte algae (i.e. excluding the land plants) have around 122 genera; they adapted to fresh water very early in their evolutionary history and have not spread back into marine environments.[citation needed]
Some time during the Ordovician, streptophytes invaded the land and began the evolution of the embryophyte land plants.[28] Present day embryophytes form a clade.[29]
Becker and Marin speculate that land plants evolved from streptophytes because living in fresh water pools pre-adapted them to tolerate a range of environmental conditions found on land, such as exposure to rain, tolerance of temperature variation, high levels of ultra-violet light, and seasonal dehydration.[30]
The preponderance of molecular evidence as of 2006 suggested that the groups making up the embryophytes are related as shown in the cladogram below (based on Qiu et al. 2006 with additional names from Crane et al. 2004).[31][32]
An updated phylogeny of Embryophytes based on the work by Novíkov & Barabaš-Krasni 2015[33] and Hao and Xue 2013[34] with plant taxon authors from Anderson, Anderson & Cleal 2007[35] and some additional clade names.[36] Puttick et al./Nishiyama et al. are used for the basal clades.[13][37][38]
The non-vascular land plants, namely the mosses (Bryophyta), hornworts (Anthocerotophyta), and liverworts (Marchantiophyta), are relatively small plants, often confined to environments that are humid or at least seasonally moist. They are limited by their reliance on water needed to disperse their gametes; a few are truly aquatic. Most are tropical, but there are many arctic species. They may locally dominate the ground cover in tundra and Arctic–alpine habitats or the epiphyte flora in rain forest habitats.
They are usually studied together because of their many similarities. All three groups share a haploid-dominant (gametophyte) life cycle and unbranched sporophytes (the plant's diploidgeneration). These traits appear to be common to all early diverging lineages of non-vascular plants on the land. Their life-cycle is strongly dominated by the haploid gametophyte generation. The sporophyte remains small and dependent on the parent gametophyte for its entire brief life. All other living groups of land plants have a life cycle dominated by the diploid sporophyte generation. It is in the diploid sporophyte that vascular tissue develops. In some ways, the term "non-vascular" is a misnomer. Some mosses and liverworts do produce a special type of vascular tissue composed of complex water-conducting cells.[citation needed] However, this tissue differs from that of "vascular" plants in that these water-conducting cells are not lignified.[citation needed] It is unlikely that water-conducting cells in the mosses is homologous with the vascular tissue in "vascular" plants.[citation needed]
Like the vascular plants, they have differentiated stems, and although these are most often no more than a few centimeters tall, they provide mechanical support. Most have leaves, although these typically are one cell thick and lack veins. They lack true roots or any deep anchoring structures. Some species grow a filamentous network of horizontal stems,[clarification needed] but these have a primary function of mechanical attachment rather than extraction of soil nutrients (Palaeos 2008).
Rise of vascular plants
During the Silurian and Devonian periods (around 440 to 360 million years ago), plants evolved which possessed true vascular tissue, including cells with walls strengthened by lignin (tracheids). Some extinct early plants appear to be between the grade of organization of bryophytes and that of true vascular plants (eutracheophytes). Genera such as Horneophyton have water-conducting tissue more like that of mosses, but a different life-cycle in which the sporophyte is more developed than the gametophyte. Genera such as Rhynia have a similar life-cycle but have simple tracheids and so are a kind of vascular plant.[citation needed] It was assumed that the gametophyte dominant phase seen in bryophytes used to be the ancestral condition in terrestrial plants, and that the sporophyte dominant stage in vascular plants was a derived trait. However, the gametophyte and sporophyte stages were probably equally independent from each other, and that the mosses and vascular plants in that case are both derived, and have evolved in opposite directions.[39]
During the Devonian period, vascular plants diversified and spread to many different land environments. In addition to vascular tissues which transport water throughout the body, tracheophytes have an outer layer or cuticle that resists drying out. The sporophyte is the dominant generation, and in modern species develops leaves, stems and roots, while the gametophyte remains very small.
All the vascular plants which disperse through spores were once thought to be related (and were often grouped as 'ferns and allies'). However, recent research suggests that leaves evolved quite separately in two different lineages. The lycophytes or lycopodiophytes – modern clubmosses, spikemosses and quillworts – make up less than 1% of living vascular plants. They have small leaves, often called 'microphylls' or 'lycophylls', which are borne all along the stems in the clubmosses and spikemosses, and which effectively grow from the base, via an intercalary meristem.[40] It is believed that microphylls evolved from outgrowths on stems, such as spines, which later acquired veins (vascular traces).[41]
Although the living lycophytes are all relatively small and inconspicuous plants, more common in the moist tropics than in temperate regions, during the Carboniferous period tree-like lycophytes (such as Lepidodendron) formed huge forests that dominated the landscape.[42]
The euphyllophytes, making up more than 99% of living vascular plant species, have large 'true' leaves (megaphylls), which effectively grow from the sides or the apex, via marginal or apical meristems.[40] One theory is that megaphylls evolved from three-dimensional branching systems by first 'planation' – flattening to produce a two dimensional branched structure – and then 'webbing' – tissue growing out between the flattened branches.[43] Others have questioned whether megaphylls evolved in the same way in different groups.[44]
The ferns and horsetails (the Polypodiophyta) form a clade; they use spores as their main method of dispersal. Traditionally, whisk ferns and horsetails were historically treated as distinct from 'true' ferns.[45] Living whisk ferns and horsetails do not have the large leaves (megaphylls) which would be expected of euphyllophytes. This has probably resulted from reduction, as evidenced by early fossil horsetails, in which the leaves are broad with branching veins.[46]
Ferns are a large and diverse group, with some 12,000 species.[47] A stereotypical fern has broad, much divided leaves, which grow by unrolling.
Seed plants, which first appeared in the fossil record towards the end of the Paleozoic era, reproduce using desiccation-resistant capsules called seeds. Starting from a plant which disperses by spores, highly complex changes are needed to produce seeds. The sporophyte has two kinds of spore-forming organs or sporangia. One kind, the megasporangium, produces only a single large spore, a megaspore. This sporangium is surrounded by sheathing layers or integuments which form the seed coat. Within the seed coat, the megaspore develops into a tiny gametophyte, which in turn produces one or more egg cells. Before fertilization, the sporangium and its contents plus its coat is called an ovule; after fertilization a seed. In parallel to these developments, the other kind of sporangium, the microsporangium, produces microspores. A tiny gametophyte develops inside the wall of a microspore, producing a pollen grain. Pollen grains can be physically transferred between plants by the wind or animals, most commonly insects. Pollen grains can also transfer to an ovule of the same plant, either with the same flower or between two flowers of the same plant (self-fertilization). When a pollen grain reaches an ovule, it enters via a microscopic gap in the coat, the micropyle. The tiny gametophyte inside the pollen grain then produces sperm cells which move to the egg cell and fertilize it.[48] Seed plants include two clades with living members, the gymnosperms and the angiosperms or flowering plants. In gymnosperms, the ovules or seeds are not further enclosed. In angiosperms, they are enclosed within the carpel. Angiosperms typically also have other, secondary structures, such as petals, which together form a flower.
Meiosis in sexual land plants provides a direct mechanism for repairing DNA in reproductive tissues.[49]Sexual reproduction appears to be needed for maintaining long-term genomic integrity and only infrequent combinations of extrinsic and intrinsic factors allow for shifts to asexuality.[49]
References
^Gray, J.; Chaloner, W.G. & Westoll, T.S. (1985), "The Microfossil Record of Early Land Plants: Advances in Understanding of Early Terrestrialization, 1970-1984 [and Discussion]", Philosophical Transactions of the Royal Society B: Biological Sciences, 309 (1138): 167–195, Bibcode:1985RSPTB.309..167G, doi:10.1098/rstb.1985.0077
^Rubinstein, C.V.; Gerrienne, P.; De La Puente, G.S.; Astini, R.A. & Steemans, P. (2010), "Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)", New Phytologist, 188 (2): 365–9, doi:10.1111/j.1469-8137.2010.03433.x, hdl:11336/55341, PMID20731783
^Engler, A. 1892. Syllabus der Vorlesungen über specielle und medicinisch-pharmaceutische Botanik: Eine Uebersicht über das ganze Pflanzensystem mit Berücksichtigung der Medicinal- und Nutzpflanzen. Berlin: Gebr. Borntraeger.
^Margulis, L (1971). "Whittaker's five kingdoms of organisms: minor revisions suggested by considerations of the origin of mitosis". Evolution. 25 (1): 242–245. doi:10.2307/2406516. JSTOR2406516. PMID28562945.
^Gerrienne, Philippe; Gonez, Paul (January 2011). "Early evolution of life cycles in embryophytes: A focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity". Journal of Systematics and Evolution. 49 (1): 1–16. doi:10.1111/j.1759-6831.2010.00096.x. hdl:2268/101745. S2CID29795245.
^Anderson, Anderson & Cleal (2007). Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. Vol. 20. SANBI. p. 280. ISBN978-1-919976-39-6. {{cite book}}: |journal= ignored (help)
^Štorch, Petr; Žárský, Viktor; Bek, Jiří; Kvaček, Jiří; Libertín, Milan (May 28, 2018). "Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous". Nature Plants. 4 (5): 269–271. doi:10.1038/s41477-018-0140-y. PMID29725100. S2CID19151297.
^ abPryer, K.M.; Schuettpelz, E.; Wolf, P.G.; Schneider, H.; Smith, A.R. & Cranfill, R. (2004), "Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences", American Journal of Botany, 91 (10): 1582–98, doi:10.3732/ajb.91.10.1582, PMID21652310, pp. 1582–3
^Boyce, C.K. (2005), "The evolutionary history of roots and leaves", in Holbrook, N.M. & Zwieniecki, M.A. (eds.), Vascular Transport in Plants, Burlington: Academic Press, pp. 479–499, doi:10.1016/B978-012088457-5/50025-3, ISBN978-0-12-088457-5
^Rutishauser, R. (1999). "Polymerous Leaf Whorls in Vascular Plants: Developmental Morphology and Fuzziness of Organ Identities". International Journal of Plant Sciences. 160 (6): 81–103. doi:10.1086/314221. PMID10572024. S2CID4658142.
^Taylor, T.N.; Taylor, E.L.; Krings, M. (2009), Paleobotany, The Biology and Evolution of Fossil Plants (2nd ed.), Amsterdam; Boston: Academic Press, pp. 508ff, ISBN978-0-12-373972-8
^ abHörandl E. Apomixis and the paradox of sex in plants. Ann Bot. 2024 Mar 18:mcae044. doi: 10.1093/aob/mcae044. Epub ahead of print. PMID 38497809
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi m...
Chess tournament Tata Steel Chess Tournament 20222022 Tata Steel Chess Masters winner Magnus Carlsen.LocationWijk aan Zee, NetherlandsDates14–30 January 2022Competitors28 from 16 nationsWinning score9.5 points of 13 (Carlsen)10.5 points of 13 (Erigaisi)Champion Magnus Carlsen (Masters) Arjun Erigaisi (Challengers)← 20212023 → The Tata Steel Chess Tournament 2022 is the 84th edition of the annual chess tournament held in Wijk aan Zee. It was held fro...
American judge (1837–1908) Gustavus FinkelnburgJudge of the United States District Court for the Eastern District of MissouriIn officeMay 20, 1905 – March 31, 1907Appointed byTheodore RooseveltPreceded byElmer B. AdamsSucceeded byDavid Patterson DyerMember of the U.S. House of Representativesfrom Missouri's 2nd districtIn officeMarch 4, 1869 – March 3, 1873Preceded byCarman A. NewcombSucceeded byErastus Wells Personal detailsBornGustav Adolf Finkelnburg(183...
Donald Trump (kiri) and Billy Bush (kanan) terekam dalam percakapan yang sangat cabul tentang wanita pada tahun 2005. Rekaman dirilis pada Oktober 2016, saat Trump menjadi calon presiden Amerika Serikat. Artikel ini bagian dariseri tentangDonald Trump Presiden Amerika Serikat Kepresidenan Transisi Pelantikan Garis waktu Keputusan eksekutif proklamasi pengampunan Perjalanan 2017 2018 2019 internasional KTT Riyadh Singapura Helsinki Hanoi DMZ Penutupan Jan 2018 2018–2019 Jajak pendapat Unjuk...
NereidGambar diambil dari Voyager 2 (1989)PenemuanDitemukan olehGerard P. Kuiper[1]Tanggal penemuan1 Mei 1949PenamaanPelafalan/ˈnɪəri.ɪd/ or /ˈnɛri.ɪd/Kata sifat bahasa InggrisNereidian, NereideanCiri-ciri orbitEpos J2000Periapsis1.372.000 km (0.00917 AU)Apoapsis9.655.000 km (0.06454 AU)Sumbu semimayor5.513.787 km (0,03685 AU)Eksentrisitas0,7507[2][3]Periode orbit360,1362 hKecepatan orbit rata-rata934 m/sInklinasi32.55° k...
Square in Tehran, Iran Telegraph building Municipality Palace of Tehran in 1950s Municipality Palace of Tehran in 1930s to 1940s ToopKhāneh (Persian: توپخانه; which literally means Artillery Barracks),[1] also spelt as Tūpkhāneh, is a major town square (Maidan-e Toopkhaneh) and a neighborhood in the south of the central district of the city of Tehran, Iran. It was built in 1867 by an order of Amir Kabir and Commissioned in 1867. After the Iranian Revolution, it was renamed I...
Il sistema NGSCB (Next-Generation Secure Computing Base), precedentemente noto con il nome di Palladium e poi trasformatosi in System Integrity Team, è un'architettura software proposta dalla Microsoft che avrebbe inserito un Trusted Software Stack nelle versioni di Microsoft Windows successive a Windows XP, in particolar modo in Windows Vista. L'unica funzionalità effettivamente implementata in tale sistema operativo che sfrutta le funzionalità offerte dal Trusted Computing è BitLocker D...
Person who aids in spaceflight activities For the position responsible for directing airplanes and other aviation-related vehicles, see air traffic controller. For other uses, see Flight controller (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sour...
هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...
← 1972 • • 1982 → Elección presidencial de El Salvador de 1977 Fecha Domingo 28 de febrero de 1977 Tipo Presidencial Demografía electoral Votantes 1 206 942 Votos válidos 1 206 942 Resultados Carlos Humberto Romero – PCN Votos 812,281 142.8 % 67.3 % Ernesto Claramount Rozeville – UNO Unión Nacional OpositoraPartido Demócrata CristianoUnión Democrática NacionalistaMovimiento Naci...
Road in trans-European E-road network E52Route informationLength554 km (344 mi)Major junctionsWest endStrasbourg, FranceEast endSalzburg, Austria LocationCountries France Germany Austria Highway system International E-road network A Class B Class European route E 52 is a road that is part of the International E-road network. It runs from Strasbourg, France to in Salzburg, Austria. Route The road follows: Strasbourg - Kehl - Baden-Baden - Karlsruhe ...
Parliamentary constituency in the United Kingdom, 1950–1974 Leicester North WestFormer Borough constituencyfor the House of Commons1950–February 1974SeatsoneCreated fromLeicester WestReplaced byLeicester West Leicester North West was a borough constituency in the city of Leicester. It returned one Member of Parliament (MP) to the House of Commons of the Parliament of the United Kingdom. The constituency was created for the 1950 general election, and abolished for the February 1974 general...
La diocesi d'Italia (in latino, dioecesis Italiciana) fu una diocesi del tardo Impero romano costituita nel 292, a seguito della parificazione giuridica tra l'Italia romana e le province. La diocesi era subordinata alla prefettura del pretorio d'Italia e la sua capitale era Mediolanum (l'odierna Milano). Indice 1 Storia 2 Amministrazione 3 Descrizione 4 Note 5 Bibliografia 6 Altri progetti Storia La diocesi venne istituita in seguito alla riforma amministrativa voluta da Diocleziano, e poi pe...
Semi-automatic pistol This article is about the firearm. For the rapper whose stage name is taken from it, see Tech N9ne. TEC-9 Intratec KG-99 MiniTypeSemi-automatic pistolPistol-caliber carbinePlace of originSwedenProduction historyDesignerGeorge KellgrenManufacturerIntratecProduced1984–2001No. built257,434Variants KG-99 TEC DC-9 TEC DC-9M AB-10 TEC-9M (Mini, 76 mm barrel, no barrel jacket, 22-round magazine) TEC-9S (stainless steel)[1] SpecificationsMass1.23–1.4...
Untuk kegunaan lain, lihat Sayang (disambiguasi). SayangAlbum studio karya KrisdayantiDirilis1 September 1998GenrePopLabelWarner Music IndonesiaProduserKrisdayantiKronologi Krisdayanti Kasih(1997)Kasih1997 Sayang(1998) Buah Hati(1998)Buah Hati1998 Sayang adalah sebuah album studio karya penyanyi pop Indonesia Krisdayanti yang dirilis pada tahun 1998. Pada album ini Krisdayanti untuk pertama kalinya terjun langsung sebagai produser rekaman dan turut menciptakan dua buah lagu.[1] Me...