Eilenberg–Steenrod axioms

In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.

One can define a homology theory as a sequence of functors satisfying the Eilenberg–Steenrod axioms. The axiomatic approach, which was developed in 1945, allows one to prove results, such as the Mayer–Vietoris sequence, that are common to all homology theories satisfying the axioms.[1]

If one omits the dimension axiom (described below), then the remaining axioms define what is called an extraordinary homology theory. Extraordinary cohomology theories first arose in K-theory and cobordism.

Formal definition

The Eilenberg–Steenrod axioms apply to a sequence of functors from the category of pairs of topological spaces to the category of abelian groups, together with a natural transformation called the boundary map (here is a shorthand for ). The axioms are:

  1. Homotopy: Homotopic maps induce the same map in homology. That is, if is homotopic to , then their induced homomorphisms are the same.
  2. Excision: If is a pair and U is a subset of A such that the closure of U is contained in the interior of A, then the inclusion map induces an isomorphism in homology.
  3. Dimension: Let P be the one-point space; then for all .
  4. Additivity: If , the disjoint union of a family of topological spaces , then
  5. Exactness: Each pair (X, A) induces a long exact sequence in homology, via the inclusions and :

If P is the one point space, then is called the coefficient group. For example, singular homology (taken with integer coefficients, as is most common) has as coefficients the integers.

Consequences

Some facts about homology groups can be derived directly from the axioms, such as the fact that homotopically equivalent spaces have isomorphic homology groups.

The homology of some relatively simple spaces, such as n-spheres, can be calculated directly from the axioms. From this it can be easily shown that the (n − 1)-sphere is not a retract of the n-disk. This is used in a proof of the Brouwer fixed point theorem.

Dimension axiom

A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an extraordinary homology theory (dually, extraordinary cohomology theory). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory, which are extraordinary cohomology theories, and come with homology theories dual to them.

See also

Notes

  1. ^ Weibel, Charles A. (1999). "History of homological algebra". In James, I. M. (ed.). History of Topology. Amsterdam: Elsevier. pp. 797–836. ISBN 0-444-82375-1.

References

Read other articles:

Kleopatra dan KaisarSenimanJean-Léon GérômeTahun1866MediumMinyak di atas kanvasUkuran183 cm × 129.5 cm (72 in × 51,0 in)LokasiKoleksi pribadi Kleopatra dan Kaisar (Prancis: Cléopâtre et Césarcode: fr is deprecated ), juga dikenal sebagai Kleopatra Menghadap Kaisar, adalah sebuah lukisan minyak di atas kanvas karya seniman akademik Prancis Jean-Léon Gérôme, yang dirampungkan pada tahun 1866. Pembuatan karya tersebut awalnya ditugaskan oleh n...

 

Says when a natural number can be represented as the sum of three squares of integers In mathematics, Legendre's three-square theorem states that a natural number can be represented as the sum of three squares of integers n = x 2 + y 2 + z 2 {\displaystyle n=x^{2}+y^{2}+z^{2}} if and only if n is not of the form n = 4 a ( 8 b + 7 ) {\displaystyle n=4^{a}(8b+7)} for nonnegative integers a and b. Distances between vertices of a double unit cube are square roots of the first six natural numbers ...

 

Julian McMahonLahirJulian Dana William McMahonTinggi6'3Suami/istriDannii Minogue (1994-1995) Brooke Burns (1999-2001) Julian Dana William McMahon (lahir 27 Juli 1968 umur:27 Juli 1968 (umur 55)) merupakan pemeran Australia dan peragawan. Filmografi Tahun Film Peran Catatan lain 1996 Profiler (TV) John Grant 2000 Charmed (TV) Cole Turner musim 3-5 2000 Chasing Sleep George 2003 Nip/Tuck (TV) Christian Troy 2005 Fantastic Four Doctor Doom 2007 Premonition Jim Hanson 2007 Prisoner Derek Pl...

Unified armed forces of Nazi Germany from 1935 to 1945 Not to be confused with Waffen-SS. WehrmachtReichskriegsflagge, the war flag and naval ensign of the Wehrmacht (1938–1945 version)Emblem of the Wehrmacht, the Balkenkreuz, a stylized version of the Iron Cross seen in varying proportionsMottoGott mit uns[3]Founded16 March 1935; 89 years ago (16 March 1935)Disbanded20 September 1945; 78 years ago (20 September 1945)[a]Service branches Heer (German...

 

Strada statale 704Tangenziale di MondovìDenominazioni precedentiNuova strada ANAS 275 Tangenziale di Mondovì LocalizzazioneStato Italia Regioni Piemonte DatiClassificazioneStrada statale Inizioex SS 28 dir presso Mondovì FineSP 5 presso Mondovì Lunghezza9,300[1] km Data apertura1994[2] GestoreANAS (2011-) Manuale La strada statale 704 Tangenziale di Mondovì (SS 704), già nuova strada ANAS 275 Tangenziale di Mondovì (NSA 275), è una strada statale italiana che...

 

GuruSeorang guru yang sedang menulis di papan tulis.PekerjaanNamaGuruFasilitatorPengajarPendidikJenis pekerjaanProfesiSektor kegiatanPendidikanPenggambaranKompetensiPedagogiKepribadianSosialProfesionalBidang pekerjaanSekolahPekerjaan terkaitProfesorDosen Guru (Sanskerta: गुरू yang berarti guru, tetapi arti secara harfiahnya adalah berat) adalah seorang pengajar suatu ilmu. Dalam bahasa Indonesia, guru umumnya merujuk pendidik profesional dengan tugas utama mendidik, mengajar, memb...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт...

 

British Council London British Council Hong Kong British Council adalah salah satu organisasi budaya Inggris yang bergerak di bidang pendidikan. Didirikan pada 1943 dan sudah ada di Indonesia sejak 1948, salah satu pelindungnya adalah Queen Elizabeth II dan ketuanya adalah Lord Kinnock, mantan pemimpin Labour Party. Saat ini British Council beroperasi di 109 negara. Beberapa kegiatannya antara lain: mempublikasikan tentang budaya dan kesempatan belajar di Inggris. Ketua 1934 – 1937 Lord Ty...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды...

 

Cargo ship of the United States Navy History United States NameSchuyler Namesake Schuyler County, Illinois, Schuyler County, Missouri, and Schuyler County, New York Orderedas type (C1-M-AV1) hull, MC hull 2163[1] BuilderLeathem D. Smith Shipbuilding Company, Sturgeon Bay, Wisconsin Yard number329[1] Laid down27 May 1944 Launched26 October 1944 Sponsored byMiss Marilyn Hughes Acquired20 June 1945 Commissioned13 July 1945 Decommissioned27 March 1946 Stricken5 June 1946 Identific...

 

Large silver coin used in 16th- to 19th-century Europe For other uses, see Thaler (disambiguation). Four thalers and one double thaler, compared to a U.S. quarter (bottom center): Clockwise from top left: Saxe-Altenburg 1616 (reverse), Saxony 1592, Austria 1701 (obverse), Saxony 1592 (obverse), Center: double thaler, Austria 1635 (obverse). A thaler or taler (/ˈtɑːlər/ TAH-lər; German: Taler [ˈtaːlɐ], previously spelled Thaler) is one of the large silver coins minted in the st...

English writer on the subject of Wicca and the occult Raymond BucklandBorn31 August 1934 (1934-08-31)London, EnglandDied27 September 2017 (2017-09-28) (aged 83)Ohio, United StatesOccupationWriterParent(s)Stanley Thomas Buckland, Eileen Lizzie Wells Raymond Buckland (31 August 1934 – 27 September 2017), whose craft name was Robat, was an English writer on the subject of Wicca and the occult, and a significant figure in the history of Wicca, of which he was a high priest in bot...

 

King of Sparta from 262 to 254 BCE This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Areus II – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this message) Areus IIKing of SpartaReign262 – 254 BCPredecessorAcrotatus IISuccessorLeonidas II Areus II (Ancient Greek: ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Telecommunications in the United Kingdom – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) Overview of telecommunications in the United Kingdom Telecommunications in the United Kingdom have evolved from the...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: South Carolina School for the Deaf and the Blind – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this message) Public school in Spartanburg, South Carolina, United StatesSouth Carolina School for the Deaf and BlindAdd...

 

  لمعانٍ أخرى، طالع نادي النصر (توضيح). النصر شعار نادي النصر الاسم الكامل نادي النصر الثقافي الرياضي اللقب العميد [1] الألوان          أزرق، أبيض المؤسس محمد علي زينل تأسس عام 1945 (منذ 79 سنة) الملعب ملعب آل مكتوم(السعة: 16,000) البلد  الإمارات العربية...

 

Kongres Amerika Serikat ke-8Gedung Kapitol (1800)Periode4 Maret 1803 – 4 Maret 1805Anggota34 senator142 anggota dewan1 delegasi tanpa suaraMayoritas SenatDemokrat-RepublikPresiden SenatAaron BurrMayoritas DPRDemokrat-RepublikKetua DPRNathaniel MaconPres. Senat Pro TemporeJohn BrownJesse FranklinJoseph AndersonSesike-1: 17 Oktober 1803 – 27 Maret 1804ke-2: 5 November 1804 – 3 Maret 1805ke-7 ←→ ke-9 Kongres Amerika Serikat Kedelapan adalah sidang cabang legislatif pemer...

2001 film by David Weaver and Bridget Newson This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Century Hotel – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) Century HotelDVD coverDirected byDavid WeaverWritten byDavid WeaverBridget NewsonProduced byVictori...

 

Германская колониальная империя †нем. Deutsche Kolonien und Schutzgebiete На этой почтовой марке Германской Восточной Африки стоит надпечатка 10 пеза и оттиск почтового штемпеля Танга (1893) Первые почтовые марки Стандартная 1893 Карта Германской империи и её колоний (помечены соответс...