Dynamic mechanical analysis

Dynamic mechanical analysis
AcronymDMA
ClassificationThermal analysis
Other techniques
RelatedIsothermal titration calorimetry
Dynamic mechanical analysis
Thermomechanical analysis
Thermogravimetric analysis
Differential thermal analysis
Dielectric thermal analysis

Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions.

Theory

Viscoelastic properties of materials

Figure 1. A typical DMA tester with grips to hold the sample and an environmental chamber to provide different temperature conditions. A sample is mounted on the grips and the environmental chamber can slide over to enclose the sample.

Polymers composed of long molecular chains have unique viscoelastic properties, which combine the characteristics of elastic solids and Newtonian fluids. The classical theory of elasticity describes the mechanical properties of elastic solids where stress is proportional to strain in small deformations. Such response to stress is independent of strain rate. The classical theory of hydrodynamics describes the properties of viscous fluid, for which stress response depends on strain rate.[2] This solidlike and liquidlike behaviour of polymers can be modelled mechanically with combinations of springs and dashpots, making for both elastic and viscous behaviour of viscoelastic materials such as bitumen.[3]

Dynamic moduli of polymers

The viscoelastic property of a polymer is studied by dynamic mechanical analysis where a sinusoidal force (stress σ) is applied to a material and the resulting displacement (strain) is measured. For a perfectly elastic solid, the resulting strain and the stress will be perfectly in phase. For a purely viscous fluid, there will be a 90 degree phase lag of strain with respect to stress.[4] Viscoelastic polymers have the characteristics in between where some phase lag will occur during DMA tests.[4] When the strain is applied and the stress lags behind, the following equations hold:[4]

  • Stress: [4]
  • Strain:

where

is the frequency of strain oscillation,
is time,
is phase lag between stress and strain.

Consider the purely elastic case, where stress is proportional to strain given by Young's modulus . We have

Now for the purely viscous case, where stress is proportional to strain rate.

The storage modulus measures the stored energy, representing the elastic portion, and the loss modulus measures the energy dissipated as heat, representing the viscous portion.[4] The tensile storage and loss moduli are defined as follows:

  • Storage modulus:
  • Loss modulus:
  • Phase angle:

Similarly, in the shearing instead of tension case, we also define shear storage and loss moduli, and .

Complex variables can be used to express the moduli and as follows:

where

Derivation of dynamic moduli

Shear stress of a finite element in one direction can be expressed with relaxation modulus and strain rate, integrated over all past times up to the current time . With strain rate and substitution one obtains . Application of the trigonometric addition theorem lead to the expression

with converging integrals, if for , which depend on frequency but not of time. Extension of with trigonometric identity lead to

.

Comparison of the two equations lead to the definition of and .[5]

Applications

Measuring glass transition temperature

One important application of DMA is measurement of the glass transition temperature of polymers. Amorphous polymers have different glass transition temperatures, above which the material will have rubbery properties instead of glassy behavior and the stiffness of the material will drop dramatically along with a reduction in its viscosity. At the glass transition, the storage modulus decreases dramatically and the loss modulus reaches a maximum. Temperature-sweeping DMA is often used to characterize the glass transition temperature of a material.

Figure 2. Typical DMA thermogram of an amorphous thermoplastic (polycarbonate). Storage Modulus (E’) and Loss Modulus (E’’) and Loss Factor tan(delta) are plotted as function of temperature. The glass transition temperature of Polycarbonate was detected to be around 151°C (evaluation according to ISO 6721-11)

Polymer composition

Varying the composition of monomers and cross-linking can add or change the functionality of a polymer that can alter the results obtained from DMA. An example of such changes can be seen by blending ethylene propylene diene monomer (EPDM) with styrene-butadiene rubber (SBR) and different cross-linking or curing systems. Nair et al. abbreviate blends as E0S, E20S, etc., where E0S equals the weight percent of EPDM in the blend and S denotes sulfur as the curing agent.[6]

Increasing the amount of SBR in the blend decreased the storage modulus due to intermolecular and intramolecular interactions that can alter the physical state of the polymer. Within the glassy region, EPDM shows the highest storage modulus due to stronger intermolecular interactions (SBR has more steric hindrance that makes it less crystalline). In the rubbery region, SBR shows the highest storage modulus resulting from its ability to resist intermolecular slippage.[6]

When compared to sulfur, the higher storage modulus occurred for blends cured with dicumyl peroxide (DCP) because of the relative strengths of C-C and C-S bonds.

Incorporation of reinforcing fillers into the polymer blends also increases the storage modulus at an expense of limiting the loss tangent peak height.

DMA can also be used to effectively evaluate the miscibility of polymers. The E40S blend had a much broader transition with a shoulder instead of a steep drop-off in a storage modulus plot of varying blend ratios, indicating that there are areas that are not homogeneous.[6]

Instrumentation

Figure 3. General schematic of a DMA instrument.

The instrumentation of a DMA consists of a displacement sensor such as a linear variable differential transformer, which measures a change in voltage as a result of the instrument probe moving through a magnetic core, a temperature control system or furnace, a drive motor (a linear motor for probe loading which provides load for the applied force), a drive shaft support and guidance system to act as a guide for the force from the motor to the sample, and sample clamps in order to hold the sample being tested. Depending on what is being measured, samples will be prepared and handled differently. A general schematic of the primary components of a DMA instrument is shown in figure 3.[7]

Types of analyzers

There are two main types of DMA analyzers used currently: forced resonance analyzers and free resonance analyzers. Free resonance analyzers measure the free oscillations of damping of the sample being tested by suspending and swinging the sample. A restriction to free resonance analyzers is that it is limited to rod or rectangular shaped samples, but samples that can be woven/braided are also applicable. Forced resonance analyzers are the more common type of analyzers available in instrumentation today. These types of analyzers force the sample to oscillate at a certain frequency and are reliable for performing a temperature sweep.

Figure 4. Torsional versus Axial Motions.

Analyzers are made for both stress (force) and strain (displacement) control. In strain control, the probe is displaced and the resulting stress of the sample is measured by implementing a force balance transducer, which utilizes different shafts. The advantages of strain control include a better short time response for materials of low viscosity and experiments of stress relaxation are done with relative ease. In stress control, a set force is applied to the sample and several other experimental conditions (temperature, frequency, or time) can be varied. Stress control is typically less expensive than strain control because only one shaft is needed, but this also makes it harder to use. Some advantages of stress control include the fact that the structure of the sample is less likely to be destroyed and longer relaxation times/ longer creep studies can be done with much more ease. Characterizing low viscous materials come at a disadvantage of short time responses that are limited by inertia. Stress and strain control analyzers give about the same results as long as characterization is within the linear region of the polymer in question. However, stress control lends a more realistic response because polymers have a tendency to resist a load.[8]

Stress and strain can be applied via torsional or axial analyzers. Torsional analyzers are mainly used for liquids or melts but can also be implemented for some solid samples since the force is applied in a twisting motion. The instrument can do creep-recovery, stress–relaxation, and stress–strain experiments. Axial analyzers are used for solid or semisolid materials. It can do flexure, tensile, and compression testing (even shear and liquid specimens if desired). These analyzers can test higher modulus materials than torsional analyzers. The instrument can do thermomechanical analysis (TMA) studies in addition to the experiments that torsional analyzers can do. Figure 4 shows the general difference between the two applications of stress and strain.[8]

Changing sample geometry and fixtures can make stress and strain analyzers virtually indifferent of one another except at the extreme ends of sample phases, i.e. really fluid or rigid materials. Common geometries and fixtures for axial analyzers include three-point and four-point bending, dual and single cantilever, parallel plate and variants, bulk, extension/tensile, and shear plates and sandwiches. Geometries and fixtures for torsional analyzers consist of parallel plates, cone-and-plate, couette, and torsional beam and braid. In order to utilize DMA to characterize materials, the fact that small dimensional changes can also lead to large inaccuracies in certain tests needs to be addressed. Inertia and shear heating can affect the results of either forced or free resonance analyzers, especially in fluid samples.[8]

Test modes

Two major kinds of test modes can be used to probe the viscoelastic properties of polymers: temperature sweep and frequency sweep tests. A third, less commonly studied test mode is dynamic stress–strain testing.

Temperature sweep

A common test method involves measuring the complex modulus at low constant frequency while varying the sample temperature. A prominent peak in appears at the glass transition temperature of the polymer. Secondary transitions can also be observed, which can be attributed to the temperature-dependent activation of a wide variety of chain motions.[9] In semi-crystalline polymers, separate transitions can be observed for the crystalline and amorphous sections. Similarly, multiple transitions are often found in polymer blends.

For instance, blends of polycarbonate and poly(acrylonitrile-butadiene-styrene) were studied with the intention of developing a polycarbonate-based material without polycarbonate's tendency towards brittle failure. Temperature-sweeping DMA of the blends showed two strong transitions coincident with the glass transition temperatures of PC and PABS, consistent with the finding that the two polymers were immiscible.[10]

Frequency sweep

Figure 5. A frequency sweep test on Polycarbonate under room temperature (25 °C). Storage Modulus (E’) and Loss Modulus (E’’) were plotted against frequency. The increase of frequency “freezes” the chain movements and a stiffer behavior was observed.

A sample can be held to a fixed temperature and can be tested at varying frequency. Peaks in and in E’’ with respect to frequency can be associated with the glass transition, which corresponds to the ability of chains to move past each other. This implies that the glass transition is dependent on strain rate in addition to temperature. Secondary transitions may be observed as well.

The Maxwell model provides a convenient, if not strictly accurate, description of viscoelastic materials. Applying a sinusoidal stress to a Maxwell model gives: where is the Maxwell relaxation time. Thus, a peak in E’’ is observed at the frequency .[9] A real polymer may have several different relaxation times associated with different molecular motions.

Dynamic stress–strain studies

By gradually increasing the amplitude of oscillations, one can perform a dynamic stress–strain measurement. The variation of storage and loss moduli with increasing stress can be used for materials characterization, and to determine the upper bound of the material's linear stress–strain regime.[8]

Combined sweep

Because glass transitions and secondary transitions are seen in both frequency studies and temperature studies, there is interest in multidimensional studies, where temperature sweeps are conducted at a variety of frequencies or frequency sweeps are conducted at a variety of temperatures. This sort of study provides a rich characterization of the material, and can lend information about the nature of the molecular motion responsible for the transition.

For instance, studies of polystyrene (Tg ≈110 °C) have noted a secondary transition near room temperature. Temperature-frequency studies showed that the transition temperature is largely frequency-independent, suggesting that this transition results from a motion of a small number of atoms; it has been suggested that this is the result of the rotation of the phenyl group around the main chain.[9]

See also

References

  1. ^ "What is Dynamic Mechanical Analysis (DMA)?". 22 April 2018. Retrieved 2018-10-01.
  2. ^ Ferry, J.D. (1980). Viscoelastic properties of polymers (3 ed.). Wiley.
  3. ^ Ferry, J.D (1991). "Some reflections on the early development of polymer dynamics: Viscoelasticity, dielectric dispersion and self-diffusion". Macromolecules. 24 (19): 5237–5245. Bibcode:1991MaMol..24.5237F. doi:10.1021/ma00019a001.
  4. ^ a b c d e Meyers, M.A.; Chawla K.K. (1999). Mechanical Behavior of Materials. Prentice-Hall.
  5. ^ Ferry, J.D.; Myers, Henry S (1961). Viscoelastic properties of polymers. Vol. 108. The Electrochemical Society.
  6. ^ a b c Nair, T.M.; Kumaran, M.G.; Unnikrishnan, G.; Pillai, V.B. (2009). "Dynamic Mechanical Analysis of Ethylene-Propylene-Diene Monomer Rubber and Styrene-Butadiene Rubber Blends". Journal of Applied Polymer Science. 112: 72–81. doi:10.1002/app.29367.
  7. ^ "DMA". Archived from the original on 2010-06-10. Retrieved 2010-02-02.
  8. ^ a b c d Menard, Kevin P. (1999). "4". Dynamic Mechanical Analysis: A Practical Introduction. CRC Press. ISBN 0-8493-8688-8.
  9. ^ a b c Young, R.J.; P.A. Lovell (1991). Introduction to Polymers (2 ed.). Nelson Thornes.
  10. ^ J. Màs; et al. (2002). "Dynamic mechanical properties of polycarbonate and acrylonitrile-butadiene-styrene copolymer blends". Journal of Applied Polymer Science. 83 (7): 1507–1516. doi:10.1002/app.10043.

Read other articles:

فايرد أبFired Up! (بالإنجليزية) ملصق الفيلممعلومات عامةالصنف الفني كوميديتاريخ الصدور 20 فبراير 2009مدة العرض 89 دقيقةاللغة الأصلية الإنجليزيةالبلد الولايات المتحدةموقع الويب sonypictures.com… (الإنجليزية) الطاقمالمخرج ويل غلوكالكاتب ويل غلوكالسيناريو ويل جلوك[1] البطولة إيريك أ�...

 

5.....GoAlbum studio karya F.T. IslandDirilis13 Mei 2015 (2015-05-13)Direkam2015GenreAlternative rock, Hard rock, Post-grungeLabelFNC Entertainment, WM JapanKronologi F.T. Island I Will(2015)I Will2015 5.....Go(2015) N.W.U(2016)String Module Error: Match not found2016 Singel dalam album 5.....Go PrimaveraDirilis: 17 April 2015 5.....Go adalah album dari band pop rock Korea Selatan F.T. Island. Album ini dirilis pada tanggal 13 Maret 2015. Album ini dirilis untuk merayakan ulang tahun...

 

ييمنون   تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 38°26′10″N 23°52′49″E / 38.436111111111°N 23.880277777778°E / 38.436111111111; 23.880277777778   الارتفاع 135 متر  السكان التعداد السكاني 1753 (إحصاء السكان) (2021)1739 (resident population of Greece) (2021)1953 (resident population of Greece) (2001)1884 (resident population of ...

Untuk politisi, lihat Jerry Lawalata. Jerry O'ConnellJerry O'Connell, 2008LahirJames Raymond Lawalata17 Februari 1974 (umur 50)Kota New York, Amerika SerikatPekerjaanAktorTahun aktif1986–sekarangSuami/istriRebecca Romijn (m. 2007–sekarang; 2 anak) Jeremiah Jerry O'Connell (lahir 17 Februari 1974) adalah aktor asal Amerika Serikat yang dikenal karena perannya dalam serial televisi Sliders, Andrew Clements dalam My Secret Identity, Vern Tessio dalam film Stand by Me, Charlie C...

 

Hobbyist who plays video games This article is about people who play any type of game, especially video games. For gamblers, see Gambling. For other uses, see Gamer (disambiguation). This article contains weasel words: vague phrasing that often accompanies biased or unverifiable information. Such statements should be clarified or removed. (December 2021) A man posing with two game controllers Video games Platforms Arcade video game Console game Game console Home console Handheld console Elect...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Bandar Udara Rembele Bener MeriahIATA: TXEICAO: WITKInformasiJenisPublik[1]PengelolaUnit Penyelenggara Bandar Udara Kelas III Direktorat Jenderal Perhubungan Udara[1]MelayaniPenerbangan SipilLokasiRembele, Bukit, Bener MeriahKetinggian dpl1.413 mdplLandasan pacu Arah Panjang Permukaan kaki m 09/27 7,860 2,250 Aspal Bandar Udara Rembele Takengon adalah bandar udara yang terletak di Gampong Bale Atu, Kecamatan Bukit, Kabupaten Bener Meriah, Aceh, Indonesia. memiliki pa...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Natalie ColeNatalie Cole nel 2007 Nazionalità Stati Uniti GenereJazzSwingPopRhythm and blues Periodo di attività musicale1975 – 2015 EtichettaCapitol, Excelsior Album pubblicati27 Sito ufficiale Modifica dati su Wikidata · Manuale Natalie Maria Cole (Los Angeles, 6 febbraio 1950 – Los Angeles, 31 dicembre 2015) è stata una cantante statunitense, figlia del cantante Nat King Cole[1]. Tra i maggiori successi della cantante: This Will Be e Sophisticat...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

ليغا باسكيت الدرجة الأولى موسم 2012–13 الدوري ليغا باسكيت الدرجة الأولى  الفرق 16   المنظم دوري كرة السلة الإيطالي  [لغات أخرى]‏  البلد إيطاليا  البطل منز سانا 1871 باسكت المركز الثاني فيرتوس روما ليغا باسكيت الدرجة الأولى موسم 2011–12  ليغا باسكيت الدرجة الأو�...

 

  提示:此条目页的主题不是中国和平统一促进会。 中華統一促進黨中華統一促進黨标志英語名称Unionist Party[1](Chinese Unification Promotion Party)主席陳福誠总裁張安樂副主席曾正星李宗奎秘書長唐警生成立2004年「保衛中華大同盟」2005年「中華統一促進黨」总部 中華民國新北市中和區建康路21號7樓党员30,000餘[2]意識形態中國統一一國兩制九二共識保守主義�...

Universal Studios theme park in Singapore Universal Studios SingaporeUniversal Studios Singapore entranceLocationResorts World, Sentosa, SingaporeCoordinates1°15′14″N 103°49′26″E / 1.254°N 103.824°E / 1.254; 103.824StatusOperatingOpened18 March 2010; 14 years ago (2010-03-18) (soft opening)28 May 2011; 13 years ago (2011-05-28) (grand opening)OwnerGenting Singapore (under a license from NBCUniversal)Operated byGenting Sin...

 

1987 studio album by Art Farmer and Fritz PauerAzureStudio album by Art Farmer and Fritz PauerReleased1987RecordedJune 25–26 & September 9–10, 1987StudioAustrophon Studios, Vienna, AustriaGenreJazzLength39:55LabelSoul NoteSN 1126ProducerGiovanni BonandriniArt Farmer chronology Something to Live For: The Music of Billy Strayhorn(1987) Azure(1987) Blame It On My Youth(1988) Azure is an album by American flugelhornist Art Farmer and Austrian pianist Fritz Pauer featuring performa...

 

Pair of Korean War battles Pork Chop Hill redirects here. For the film about the battle, see Pork Chop Hill (film). Battle of Pork Chop HillPart of the Korean WarPainting of the 45th Infantry Division at Pork Chop Hill in 1952Date16–18 April / 6–11 July 1953LocationNorth of Yeoncheon, Korea38°14′29″N 127°1′10″E / 38.24139°N 127.01944°E / 38.24139; 127.01944Result UN victory in April battleChinese victory in July battleBelligerents  United Nations &...

Kolong kencing tunggal di Singel Kolong kencing (Belanda: plaskrul ) adalah peturasan umum, banyak di antaranya ditemukan di pusat kota Amsterdam . Mereka berasal dari akhir abad ke-19, dan pertama kali dipasang oleh Departemen Pekerjaan Umum Amsterdam. Kolong tersebut terbuat dari lembaran baja berbentuk spiral yang digantung setengah meter di atas tanah dengan empat kaki besi, dan dicat hijau tua. Setengah bagian atas pelat dilubangi sehingga setiap orang yang lewat dapat melihat langsung ...

 

Questa voce o sezione sull'argomento stadi di calcio del Regno Unito non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Recreation GroundSaltergate Informazioni generaliStato Regno Unito    Inghilterra UbicazioneSaltergate, Chesterfield, Derbyshire Inizio lavori1871 Inaugurazione1871 Chiusura2010 Demolizione2012 ProprietarioChesterf...

 

タンゴ サンバの太鼓演奏(ブラジル) ラテン音楽(ラテンおんがく)は、中南米発祥の音楽の総称で、『中南米の音楽』を意味するラテン・アメリカ音楽(英語: Latin American music)とほぼ同一の音楽ジャンルの概念を指す[注 1]。キューバ・カリブ系、ブラジル系など、それぞれに音楽的特徴があり、また、ラテン・アメリカ系移民の多いニューヨークやロサン�...

Figure 1. Graphe d'une fonction monotone (fonction croissante). Figure 2. Graphe d'une fonction monotone (fonction décroissante). Figure 3. Graphe d'une fonction qui n'est pas monotone. En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été...

 

1975 Russian filmStep ForwardLyudmila Gurchenko as ValentinaDirected byNaum Birman[1]Written byEmil BraginskyProduced byGalina ShadurKaren ShakhnazarovStarringLyudmila GurchenkoNikolay Volkov Jr.Andrey Popov Yevgeny LeonovLev DurovBoris ShcherbakovAndrei MironovCinematographyAlexander ChirovEdited byLyudmila SviridenkoMusic byStanislav PozhlakovProductioncompanyLenfilmRelease date 1975 (1975) Running time77 min.CountryRussiaLanguageRussianStep Forward (‹See Tfd›Russian: Ша�...