Dynamic discrete choice

Dynamic discrete choice (DDC) models, also known as discrete choice models of dynamic programming, model an agent's choices over discrete options that have future implications. Rather than assuming observed choices are the result of static utility maximization, observed choices in DDC models are assumed to result from an agent's maximization of the present value of utility, generalizing the utility theory upon which discrete choice models are based.[1]

The goal of DDC methods is to estimate the structural parameters of the agent's decision process. Once these parameters are known, the researcher can then use the estimates to simulate how the agent would behave in a counterfactual state of the world. (For example, how a prospective college student's enrollment decision would change in response to a tuition increase.)

Mathematical representation

Agent 's maximization problem can be written mathematically as follows:

where

  • are state variables, with the agent's initial condition
  • represents 's decision from among discrete alternatives
  • is the discount factor
  • is the flow utility receives from choosing alternative in period , and depends on both the state and unobserved factors
  • is the time horizon
  • The expectation is taken over both the 's and 's in . That is, the agent is uncertain about future transitions in the states, and is also uncertain about future realizations of unobserved factors.

Simplifying assumptions and notation

It is standard to impose the following simplifying assumptions and notation of the dynamic decision problem:

1. Flow utility is additively separable and linear in parameters

The flow utility can be written as an additive sum, consisting of deterministic and stochastic elements. The deterministic component can be written as a linear function of the structural parameters.

2. The optimization problem can be written as a Bellman equation

Define by the ex ante value function for individual in period just before is revealed:

where the expectation operator is over the 's, and where represents the probability distribution over conditional on . The expectation over state transitions is accomplished by taking the integral over this probability distribution.

It is possible to decompose into deterministic and stochastic components:

where is the value to choosing alternative at time and is written as

where now the expectation is taken over the .

3. The optimization problem follows a Markov decision process

The states follow a Markov chain. That is, attainment of state depends only on the state and not or any prior state.

Conditional value functions and choice probabilities

The value function in the previous section is called the conditional value function, because it is the value function conditional on choosing alternative in period . Writing the conditional value function in this way is useful in constructing formulas for the choice probabilities.

To write down the choice probabilities, the researcher must make an assumption about the distribution of the 's. As in static discrete choice models, this distribution can be assumed to be iid Type I extreme value, generalized extreme value, multinomial probit, or mixed logit.

For the case where is multinomial logit (i.e. drawn iid from the Type I extreme value distribution), the formulas for the choice probabilities would be:

Estimation

Estimation of dynamic discrete choice models is particularly challenging, due to the fact that the researcher must solve the backwards recursion problem for each guess of the structural parameters.

The most common methods used to estimate the structural parameters are maximum likelihood estimation and method of simulated moments.

Aside from estimation methods, there are also solution methods. Different solution methods can be employed due to complexity of the problem. These can be divided into full-solution methods and non-solution methods.

Full-solution methods

The foremost example of a full-solution method is the nested fixed point (NFXP) algorithm developed by John Rust in 1987.[2] The NFXP algorithm is described in great detail in its documentation manual.[3]

A recent work by Che-Lin Su and Kenneth Judd in 2012[4] implements another approach (dismissed as intractable by Rust in 1987), which uses constrained optimization of the likelihood function, a special case of mathematical programming with equilibrium constraints (MPEC). Specifically, the likelihood function is maximized subject to the constraints imposed by the model, and expressed in terms of the additional variables that describe the model's structure. This approach requires powerful optimization software such as Artelys Knitro because of the high dimensionality of the optimization problem. Once it is solved, both the structural parameters that maximize the likelihood, and the solution of the model are found.

In the later article[5] Rust and coauthors show that the speed advantage of MPEC compared to NFXP is not significant. Yet, because the computations required by MPEC do not rely on the structure of the model, its implementation is much less labor intensive.

Despite numerous contenders, the NFXP maximum likelihood estimator remains the leading estimation method for Markov decision models.[5]

Non-solution methods

An alternative to full-solution methods is non-solution methods. In this case, the researcher can estimate the structural parameters without having to fully solve the backwards recursion problem for each parameter guess. Non-solution methods are typically faster while requiring more assumptions, but the additional assumptions are in many cases realistic.

The leading non-solution method is conditional choice probabilities, developed by V. Joseph Hotz and Robert A. Miller.[6]

Examples

Bus engine replacement model

The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type.[4]

The model is a simple regenerative optimal stopping stochastic dynamic problem faced by the decision maker, Harold Zurcher, superintendent of maintenance at the Madison Metropolitan Bus Company in Madison, Wisconsin. For every bus in operation in each time period Harold Zurcher has to decide whether to replace the engine and bear the associated replacement cost, or to continue operating the bus at an ever raising cost of operation, which includes insurance and the cost of lost ridership in the case of a breakdown.

Let denote the odometer reading (mileage) at period , cost of operating the bus which depends on the vector of parameters , cost of replacing the engine, and the discount factor. Then the per-period utility is given by

where denotes the decision (keep or replace) and and represent the component of the utility observed by Harold Zurcher, but not John Rust. It is assumed that and are independent and identically distributed with the Type I extreme value distribution, and that are independent of conditional on .

Then the optimal decisions satisfy the Bellman equation

where and are respectively transition densities for the observed and unobserved states variables. Time indices in the Bellman equation are dropped because the model is formulated in the infinite horizon settings, the unknown optimal policy is stationary, i.e. independent of time.

Given the distributional assumption on , the probability of particular choice is given by

where is a unique solution to the functional equation

It can be shown that the latter functional equation defines a contraction mapping if the state space is bounded, so there will be a unique solution for any , and further the implicit function theorem holds, so is also a smooth function of for each .

Estimation with nested fixed point algorithm

The contraction mapping above can be solved numerically for the fixed point that yields choice probabilities for any given value of . The log-likelihood function can then be formulated as

where and represent data on state variables (odometer readings) and decision (keep or replace) for individual buses, each in periods.

The joint algorithm for solving the fixed point problem given a particular value of parameter and maximizing the log-likelihood with respect to was named by John Rust nested fixed point algorithm (NFXP).

Rust's implementation of the nested fixed point algorithm is highly optimized for this problem, using Newton–Kantorovich iterations to calculate and quasi-Newton methods, such as the Berndt–Hall–Hall–Hausman algorithm, for likelihood maximization.[5]

Estimation with MPEC

In the nested fixed point algorithm, is recalculated for each guess of the parameters θ. The MPEC method instead solves the constrained optimization problem:[4]

This method is faster to compute than non-optimized implementations of the nested fixed point algorithm, and takes about as long as highly optimized implementations.[5]

Estimation with non-solution methods

The conditional choice probabilities method of Hotz and Miller can be applied in this setting. Hotz, Miller, Sanders, and Smith proposed a computationally simpler version of the method, and tested it on a study of the bus engine replacement problem. The method works by estimating conditional choice probabilities using simulation, then backing out the implied differences in value functions.[7][8]

See also

References

  1. ^ Keane & Wolpin 2009.
  2. ^ Rust 1987.
  3. ^ Rust, John (2008). "Nested fixed point algorithm documentation manual". Unpublished.
  4. ^ a b c Su, Che-Lin; Judd, Kenneth L. (2012). "Constrained Optimization Approaches to Estimation of Structural Models". Econometrica. 80 (5): 2213–2230. doi:10.3982/ECTA7925. hdl:10419/59626. ISSN 1468-0262.
  5. ^ a b c d Iskhakov, Fedor; Lee, Jinhyuk; Rust, John; Schjerning, Bertel; Seo, Kyoungwon (2016). "Comment on "constrained optimization approaches to estimation of structural models"". Econometrica. 84 (1): 365–370. doi:10.3982/ECTA12605. ISSN 0012-9682.
  6. ^ Hotz, V. Joseph; Miller, Robert A. (1993). "Conditional Choice Probabilities and the Estimation of Dynamic Models". Review of Economic Studies. 60 (3): 497–529. doi:10.2307/2298122. JSTOR 2298122.
  7. ^ Aguirregabiria & Mira 2010.
  8. ^ Hotz, V. J.; Miller, R. A.; Sanders, S.; Smith, J. (1994-04-01). "A Simulation Estimator for Dynamic Models of Discrete Choice". The Review of Economic Studies. 61 (2). Oxford University Press (OUP): 265–289. doi:10.2307/2297981. ISSN 0034-6527. JSTOR 2297981. S2CID 55199895.

Further reading

Read other articles:

Kekuatan CintaAlbum studio karya Vina PanduwinataDirilis21 Mei 2010GenrePopLabelKariza ViratamaKronologi Vina Panduwinata Vina Terbaik 1981-2006 (2006)Vina Terbaik 1981-20062006 Kekuatan Cinta (2010) Kekuatan Cinta merupakan album studio ke-11 dari Vina Panduwinata. Dirilis pada 21 Mei 2010. Lagu utamanya di album ini ialah Kekuatan Cinta. Daftar lagu Cinta Yang Terakhir Kekuatan Cinta Lewati Badai Engkaulah Tuhan Abdimu Cerita Kita Gadis Gincu Waktu Mu You're The One Oh Cinta Kekasih Jiw...

 

American politician This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (March 2013) (Learn how and when to remove this template message) Rolla McMillen1948 photo by Harris & Ewing (Washington, DC)Member of the United States House of RepresentativesIn officeJanuary 3, 1949 – January 3, 1951Preceded byMelvin PriceSucceede...

 

برايان مارسدن (بالإنجليزية: Brian Geoffrey Marsden)‏  معلومات شخصية الميلاد 5 أغسطس 1937(1937-08-05)كامبريدج الوفاة 18 نوفمبر 2010 (73 سنة)بورلينغتون  سبب الوفاة ابيضاض الدم  مواطنة المملكة المتحدة  عضو في الأكاديمية النرويجية للعلوم والآداب  الحياة العملية المدرسة الأم جامعة ييل ...

العلاقات الباربادوسية البيلاروسية باربادوس روسيا البيضاء   باربادوس   روسيا البيضاء تعديل مصدري - تعديل   العلاقات الباربادوسية البيلاروسية هي العلاقات الثنائية التي تجمع بين باربادوس وروسيا البيضاء.[1][2][3][4][5] مقارنة بين البلدين هذه مقا�...

 

Simon Ngapandouetnbu Ngapandouetnbu pada tahun 2021Informasi pribadiNama lengkap Simon Brady Ngapandouetnbu[1]Tanggal lahir 12 April 2003 (umur 21)Tempat lahir Foumban, KamerunTinggi 186 cm (6 ft 1 in)[1]Posisi bermain Penjaga gawangInformasi klubKlub saat ini MarseilleNomor 1Karier junior2011–2013 ASPTT Marseille2013–2014 ASMJ Blancarde2014–2019 MarseilleKarier senior*Tahun Tim Tampil (Gol)2019– Marseille B 24 (0)2019– Marseille 0 (0) * Penampil...

 

Сине-жёлтый флаг — основной символ украинского национального движения, государственный флаг УНР, Украинской державы гетьмана Скоропадского, ЗУНР, Холодноярской республики, Республики Команча, Гуцульской республики (1917—1920 гг.), Карпатской Украины (1939 год), УГП (19...

2017–2019 Parliament of the United Kingdom ←2015–2017 Parliament 2019–present Parliament→Palace of Westminster in 2017OverviewLegislative bodyParliament of the United KingdomMeeting placePalace of WestminsterTerm21 June 2017 – 6 November 2019Election2017 United Kingdom general electionGovernmentSecond May ministry (until 24 July 2019)First Johnson ministry (from 24 July 2019)House of CommonsMembers650SpeakerJohn Bercowuntil 4 November 2019Sir Lindsay Hoylefrom 4 Nove...

 

Yemeni politician Abdullah Mohsen al-AkwaMinister of ElectricityIn office11 June 2014 – 27 November 2018PresidentAbdrabbuh Mansur HadiPrime MinisterMohammed BasindawaHimself (Acting)Khaled BahahAhmed Obeid bin DaghrPreceded bySaleh SumaiSucceeded byMohammed Abdullah Saleh Naser al-AnaniPrime Minister of YemenActingIn office24 September 2014 – 9 November 2014PresidentAbdrabbuh Mansur HadiDeputyAhmed Obeid bin DaghrPreceded byMohammed BasindawaSucceeded byKhaled BahahDeput...

 

PY Ta 641Prasasti Linear B PY Ta 641, dipajang di Museum Arkeologi Nasional, Athena.Bahan bakuTanah liatUkuransek. 15 cm × 4 cm × 1 cm (5,91 in × 1,57 in × 0,39 in)Sistem penulisanLinear BDibuatk. 1180 SMDitemukan1952Istana Nestor, Pylos, Yunani.Ditemukan olehCarl BlegenLokasi sekarangMuseum Arkeologi Nasional, Athena, YunaniKebudayaanPeradaban Mikenai Artikel ini mengandung karakter Unicode Linear B. Tanpa dukunga...

Special military brigade of the Eurocorps 47°48′58.61″N 7°37′16.27″E / 47.8162806°N 7.6211861°E / 47.8162806; 7.6211861 Franco-German BrigadeFrench: Brigade Franco-AllemandeGerman: Deutsch-Französische BrigadeCoat of arms of the Franco-German Brigade.Active2 October 1989 – presentCountry France GermanyBranch French Army German ArmyTypeMechanized infantrySize1 brigade (5,980)Part of1st Division and 10th Panzer DivisionGarrison/HQM...

 

DeuceOpera teatrale AutoreTerrence McNally Titolo originaleDeuce Lingua originaleInglese Prima assoluta6 maggio 2007Magic Box Theatre (New York)   Manuale Deuce è una commedia del drammaturgo statunitense Terrence McNally, debuttata a Broadway nel 2007. Indice 1 Trama 2 Produzioni 3 Note 4 Collegamenti esterni Trama Le anziane ex campionesse di tennis Leona Mullen e Midge Barker assistono insieme ai quarti di finali di un campionato di tennis ed attendono di essere premiate al termine d...

 

Chilean footballer (1928-2004) Isaac Carrasco Personal informationFull name Isaac Carrasco RivasDate of birth (1928-08-14)14 August 1928Place of birth Mariquina, ChileDate of death 5 April 2004(2004-04-05) (aged 75)Place of death La Serena, ChilePosition(s) DefenderSenior career*Years Team Apps (Gls)1950–1951 Naval 1952–1952 Audax Italiano 1954–1959 Colo-Colo 1960–1964 Santiago Morning International career1951–1956 Chile B 1954–1961 Chile 25 (0)Managerial career1965 Santiago ...

زراعة الأعضاء أول عملية زراعة قلب أجريت في جنوب أفريقيا في عام 1967. معلومات عامة من أنواع عملية جراحية،  وإجراء جراحي  [لغات أخرى]‏  التاريخ وصفها المصدر قاموس بروكهاوس وإفرون الموسوعي،  وقاموس بروكهاوس وإفرون الموسوعي الصغير  [لغات أخرى]‏  تعديل م�...

 

PP2 Names Preferred IUPAC name 1-tert-Butyl-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine Identifiers CAS Number 172889-27-9 Y 3D model (JSmol) Interactive image ChEBI CHEBI:78331 ChemSpider 4712 N PubChem CID 4878 UNII PK8JPC58XB Y CompTox Dashboard (EPA) DTXSID60274447 InChI InChI=1S/C15H16ClN5/c1-15(2,3)21-14-11(13(17)18-8-19-14)12(20-21)9-4-6-10(16)7-5-9/h4-8H,1-3H3,(H2,17,18,19) SMILES Nc2ncnc(c12)n(C(C)(C)C)nc1-c3ccc(Cl)cc3 Properties Chemical formula C15H16ClN5...

 

Waterborne diseasesPenyakit bawaan air dapat menyebar melalui air tanah yang terkontaminasi patogen kotoran dari jamban.Informasi umumSpesialisasiPenyakit menularPenyakit bawaan air adalah kondisi-kondisi (disini merujuk kepada segala yang memiliki efek burung ke kesehatan manusia, seperti kematian, disabilitas, penyakit atau kelainan)[1]:47 yang disebabkan oleh mikroorganisme patogen yang ditularkan oleh air. Penyakit-penyakit ini dapat tersebar saat mandi, mencuci, minum air, atau m...

Terowongan Dasar LötschbergTerowongan Dasar Lötschberg bersama dengan Terowongan Simplon membentuk bagian barat proyek Alptransit(kuning: terowongan utama, merah: jalur utama existing, angka: tahun penyelesaian)IkhtisarNama resmiJerman: Lötschberg Basis Tunnelcode: de is deprecated JalurJalur LötschbergLokasiTraversing the Bernese Alps di Switzerland(Kanton Bern, Kanton Valais)Koordinat46°34′41″N 7°38′56″E / 46.578°N 7.649°E / 46.578; 7.649–46°1...

 

Ланселот Пол мужской Отец Король Бан[вд] Мать Элейна из Бенвика[вд] Братья и сёстры Эктор де Марис[вд] Супруга Элейна из Корбеника[d] Дети Галахад[1]  Медиафайлы на Викискладе Лансело́т Озёрный (Ланцелот, фр. Lancelot du Lac, англ. Lancelot of the Lake, также Launcelot) — в леге...

 

Cardiac condition Medical conditionEctopic pacemakerOther namesEctopic focus, ectopic fociAn illustration of ectopic foci near papillary muscles in the left ventricleSpecialtyElectrophysiology, CardiologySymptoms Isolated ectopic beats Feeling faint Palpitations An ectopic pacemaker, also known as ectopic focus or ectopic foci, is an excitable group of cells that causes a premature heart beat outside the normally functioning SA node of the heart. It is thus a cardiac pacemaker that is ectopic...

Al-Muharraq Sports ClubCalcio I rossi, I lupi rossi, Gli Sceicchi del Golfo Segni distintiviUniformi di gara Casa Trasferta Colori sociali Rosso Dati societariCittàAl Muharraq Nazione Bahrein ConfederazioneAFC Federazione BAF CampionatoBahraini Premier League Fondazione1928 Presidente Sceicco Ahmed ibn Ali Al-Khalifa Allenatore Marcos Paquetá StadioAl Muharraq Stadium(20.000 posti) Sito webwww.muharraqclub.com PalmarèsTitoli nazionali34 Bahraini Premier League Trofei nazionali30 Bahra...

 

هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (يوليو 2016) الحضارة السومريةخارطة المدن السومرية القديمةالمعطياتالنطاق الجغرافيبلاد الرافدينالفترة4500 -1900 ق.مأهم المواقعإريدو، كيش، أور، الوركاء، نفر، بورسيبا الحضارة السومرية م�...