Ingber has been scientific founder of five companies: Neomorphics, Inc.,[3] a tissue engineering startup which led to clinical products through subsequent acquisitions (Advanced Tissue Sciences Inc.); Tensegra, Inc. (formerly known as Molecular Geodesics, Inc.,)[4] which 3D-printed medical devices; and most recently, Emulate, Inc.,[5] which formed to commercialize human "organs-on-chips" that accelerate drug development, detect toxicities and advance personalized medicine by replacing animal testing; Boa Biomedical, Inc. (originally known as Opsonix, Inc.),[6] which aims to reduce deaths due to sepsis and blood infections by removing pathogens from the blood; and FreeFlow Medical Devices, LLC, which develops special coatings for medical devices to eliminate the formation of blood clots and biofilms on materials.
Education and academic research
Ingber grew up in East Meadow, New York.[7] He received a combined B.A./M.A. in molecular biophysics and biochemistry from Yale College and Yale Graduate School of Arts and Sciences in 1977; an M.Phil. in cell biology from Yale Graduate School of Arts and Sciences in 1981; and a combined M.D./Ph.D. from Yale School of Medicine and Yale Graduate School of Arts and Sciences in 1984.[citation needed] At Yale, he carried out undergraduate research on DNA repair with Paul Howard-Flanders,[8] and on cancer metastasis with Alan Sartorelli.
Ingber worked on development of cancer therapeutics[citation needed] with Kenneth Harrap at the Royal Cancer Hospital/Royal Marsden Hospital in England, with support from a Bates Traveling Fellowship. He carried out his Ph.D. dissertation research under the direction of Dr. James Jamieson in the department of cell biology,[9] and his advisory committee included George Palade, Elizabeth Hay and Joseph Madri. From 1984 to 1986 he completed his training as an Anna Fuller Postdoctoral Fellow[10] under the mentorship of Dr. Judah Folkman in the Surgical Research Laboratory at Boston Children's Hospital and Harvard Medical School.[11][12]
Scientific career
Appointments
This section needs to be updated. Please help update this article to reflect recent events or newly available information.(July 2020)
In 1993, appointed a research associate[citation needed] in pathology at Boston Children's Hospital
In 1999, promoted to Professor[citation needed] of Pathology at Harvard Medical School
In 2002, appointed a senior associate[citation needed] in the Vascular Biology Program at Boston Children's Hospital
In 2004, Ingber became the first incumbent[citation needed] of the Judah Folkman Professorship of Vascular Biology at Harvard Medical School. As of December 2019, he currently holds this position[citation needed].
Ingber is best known for his discovery of the role mechanical forces play in developmental control and in cancer formation, and for his application of these principles to develop bioinspired medical devices, nanotechnologies, and therapeutics. Ingber's early scientific work led to the discovery that tensegrity architecture[16] - first described by the architect Buckminster Fuller and the sculptor Kenneth Snelson - is a fundamental design principle that governs how living systems are structured, from individual molecules and cells to whole tissues, organs and organisms.[17]
Ingber's work on tensegrity led him to propose that mechanical forces play as important a role in biological control as chemicals and genes do,[18] and to investigate the molecular mechanism by which cells convert mechanical signals into changes in intracellular biochemistry and gene expression, a process known as "mechanotransduction."[19] Ingber determined that living cells use tensegrity architecture to stabilize their shape and cytoskeleton, that cellular integrins function as mechanosensors on the cell surface, and that cytoskeletal tension (or "prestress," which is central to the stability of tensegrity structures) is a fundamental regulator of many cellular responses to mechanical cues.[20] Ingber's tensegrity theory also led to the prediction in the early 1980s that changes in extracellular matrix structure and mechanics play a fundamental role in tissue and organ development, and that deregulation of this form of developmental control can promote cancer formation.[21]
Ingber's contributions in translational medicine include discovery of one of the first angiogenesis inhibitor compounds (TNP-470)[22] to enter clinical trials for cancer, creation of tissue engineering scaffolds that led to clinical products, development of a dialysis-like blood cleansing device for treatment of blood stream infections that is moving towards clinical testing,[23][24] creation of a mechanically-activated nanotechnology for targeting clot-busting drugs to sites of vascular occlusion,[25] and co-development of a new surface coating based on Slippery Liquid Infused Porous Surfaces (SLIPS) for medical devices and implants that could eliminate the conventional dependency on anticoagulant drugs that pose life-threatening side-effect risks.[26]
One of his more recent innovations is the creation of tiny, complex, three-dimensional models of living human organs, known as "organs-on-chips" (Organ Chips), which mimic complicated human organ functions in vitro as a way to potentially replace traditional animal-based methods for testing of drugs and toxins.[27] The first human Organ Chip, a human Lung Chip, was reported in Science in 2010.[28] Created using microchip manufacturing methods[citation needed], the Lung Chip is a complex three-dimensional model of a breathing lung that incorporates living human lung alveolar epithelial cells interfaced with endothelial cells within microfluidic channels cast in silicone rubber, which recapitulate structure and function of the tissue-vasculature interface of lung alveolus (air sacs). In 2012, Ingber and his team demonstrated in a study in Science Translational Medicine the ability to mimic a complex human disease on the Lung Chip — specifically pulmonary edema, known commonly as “fluid on the lungs” — and to identify new therapeutics using this model.[29] As an alternative to animal studies, Organ Chips could be used to study the safety and efficacy of new drugs, accelerating the introduction of new drugs to market while significantly lowering research costs.[30] Ingber's group has since expanded this technology to develop other model organs, including the intestine,[31] kidney,[32] bone marrow,[33] blood-brain barrier,[34] and liver. In 2012, Ingber's team was awarded a DARPA contract to string together multiple Organ Chips to build an automated human body-on-chips that will recapitulate whole-body physiology.[35] This system could be used in combination with computational modeling to rapidly assess responses to new drug candidates, providing critical information on their safety, efficacy, and pharmacokinetics.[36]
Other new technologies from Ingber's lab include development of a fully biodegradable plastic alternative inspired by natural cuticle material found in shrimp shells and insect exoskeletons, known as “Shrilk”;[37] a mechanically activated nanotherapeutic that selectively directs clot-busting drugs to sites of vascular occlusion while minimizing unintended bleeding;[38] an siRNA nanoparticle therapy that prevents breast cancer progression;[39] a dialysis-like sepsis device that cleanses blood of all infectious pathogens, fungi and toxins without requiring prior identification;[40] a surface coating for medical materials and devices that prevents clot formation and bacteria accumulation that reduces the need for use of conventional anticoagulant drugs that frequently result in life-threatening side effects,[26] and a computational approach to diagnostics and therapeutics that incorporates both animation and molecular modeling software to virtually develop and test potential drugs designed to fit precisely into their targets’ molecular structures.[41]
Leadership and public service
Earlier in his career, Ingber helped to bridge Harvard University, its affiliated hospitals, and the Massachusetts Institute of Technology (MIT) through his involvement in the Center for Integration in Medicine and Innovative Technology, Harvard-MIT Division of Health Sciences and Technology, and Dana-Farber/Harvard Cancer Center[citation needed]. He also has been a member[citation needed] of the Center for Nanoscale Systems and the Materials Research Science and Engineering Center at Harvard, as well as the MIT Center for Bioengineering.
Ingber also has served as a consultant[citation needed] to numerous companies in the pharmaceutical, biotechnology, and cosmetics industries, including Merck, Roche, Astrazeneca, Biogen, Chanel, and L’Oreal, among others. He currently chairs[citation needed] the Scientific Advisory Boards of Emulate, Inc. and Boa Biomedical, Inc.
Ingber has received numerous awards and distinctions, including:
2021: Elected a member of the National Academy of Engineering for interdisciplinary contributions to mechanobiology and microsystems engineering, and leadership in biologically inspired engineering.[48]
2018: Named to the Highly Cited Researchers List 2006–2016 by Clarivate Analytics.[49]
2017: Founder's Award from the Biophysical Society.[50]
2015: Elected to the National Academy of Inventors, and won Product Design and Best Design of the Year Awards from London Design Museum for Organs-on-Chips, named Leading Global Thinker of 2015 by Foreign Policy Magazine.[54]
2014: Delivered the Graeme Clark Oration in Melbourne, Australia to an audience of over 1,400.[55][56]
2013: Received the NC3Rs 3Rs Prize from the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs),[57] and was named an honorary member of the Society of Toxicology for his work on Organs-on-Chips.[58]
2012: Elected to the National Institute of Medicine (formerly Institute of Medicine) of the U.S. National Academies,[59] one of the highest honors in the field of medicine in the United States, and won the World Technology Award in the biotechnology category.[60]
2011: Inducted into the American Institute for Medical and Biological Engineering's College of Fellows[61] and received the Holst Medal.[62]
2010: Received the Lifetime Achievement Award from the Society for In Vitro Biology[63] and the Rous-Whipple Award from the American Society for Investigative Pathology.[64]
2009: Received the Pritzker Award from the Biomedical Engineering Society.[65]
2009–2014: Received a Breast Cancer Innovator Award[citation needed] from the Department of Defense.
2005: Received the Talbot Medal[citation needed] in Theoretical and Applied Mechanics from University of Illinois Urbana-Champaign..
2002: Named to Esquire's list[citation needed] of the world's "Best and Brightest".
1991 to 1996: Recipient of an American Cancer Society Faculty Research Award.[66]
Ingber has also been named to multiple Who's Who lists for his diverse contributions including: Science and Engineering (1991), America (1994), the World (1997), Medicine and Healthcare (1999), Business Leaders and Professionals—Honors Edition (2007), and was honored with the Albert Nelson Marquis Lifetime Achievement Award in 2018.[67]
Art and design exhibitions
Ingber collaborates internationally with artists, architects, and designers, as well as scientists, physicians, engineers, and the public. Examples of his involvement in the art/design community include:
2019: Guest curator[citation needed] of Bio-Futurism Exhibition and contributor to the Triennial Exhibition at Cooper-Hewitt Smithsonian Design Museum, New York; Organ Chips displayed at Barbican Centre London and Pompidou Centre Paris.
2018: Organ Chips displayed[citation needed] in Biodesign Exhibition at the Rhode Island School of Design, Providence, RI.
2017: Co-produced short film “The Beginning”[68] to entertain and educate the public about molecular biology down to the atomic scale of precision.
2016: Cellular Tensegrity Models, Organ Chips, and Shrilk exhibited at the Martin Gropius-Bau Museum, Berlin; Organ Chips displayed at the Holon Design Museum, Israel and King Abdulaziz Center for World Culture, Saudi Arabia[citation needed].
2015: Artificial biospleen prototype exhibited at the National Museum of Health and Medicine (NMHM); Organ Chips exhibited at the Museum of Modern Art (MoMA) in New York, displayed at Le Laboratoire Cambridge in Cambridge, Massachusetts, and named winner of the Design of the Year Award by the Design Museum in London;[69] Shrilk displayed at the Booth Museum of Natural history in Brighton, UK.
2015: Human Organs-on-Chips exhibited at the Museum of Modern Art (MoMA) in New York; displayed at Le Laboratoire Cambridge in Cambridge, Massachusetts; and selected as a finalist by the Design Museum in London for the Design of the Year Award[citation needed].
2011: Human Lung-on-a-Chip selected an INDEX Design for Life Award finalist and included in the INDEX: Award 2011 Exhibition in Copenhagen[citation needed].
2010: Tensegrity multimedia exhibition displayed at Le Laboratoire in Paris; lecture presentation on tensegrity and nanobiotechnology at the Boston Museum of Science[citation needed].
2005: Tensegrity multimedia exhibited at the "Image and Meaning" conference at the Getty Center in Los Angeles[citation needed].
2002: Lecture presentation[citation needed] tensegrity and biological design at Boston Museum of Science.
2001: Lecture on tensegrity presented at the "Image and Meaning" conference at MIT in Cambridge, Massachusetts; Tensegrity multimedia presentation included in exhibition "On Growth and Form" at the Textile Museum of Canada in Toronto[citation needed].
^Ingber, Donald (2011). "What We Sort: Venus Paradise Coloring Set", in Sherry Turkle (ed). Falling for Science: Objects in Mind. MIT Press (pp. 252–261), p. 254.
Tempat di mana saluran televisi di Azerbaijan dipublikasikan Televisi di Azerbaijan beroperasi pada 1956. Waktu itu beroperasi dengan nama RSS Azerbaijan. Televisi di Azerbaijan dipublikasikan sampai sekarang. Daftar televisi Nasional AzTV Idman Azerbaijan TV İctimai Televiziya və Radio Yayımları Şirketi Medeniyyet TV Swasta Kebangsaan Lider TV Space TV Xazar TV ANS TV Azad Azerbaijan TV Perantauan Cenub TV Dunya TV Gutb TV Aygun TV Alternativ TV Khayal TV Kapaz TV MTV (Azerbaijan) Simur...
Louis JouvetLouis Jouvet di The School for Wives tahun 1950LahirJules Eugène Louis Jouvet24 December 1887Crozon, FranceMeninggal16 August 1951 (usia 63)Paris, PrancisPekerjaanAktor, Sutradara, Manajer TeaterSuami/istriElse Collin (1886–1967)Madeleine Ozeray (? – 1943) Jules Eugène Louis Jouvet (24 Desember 1887 – 16 Agustus 1951) adalah seorang aktor, sutradara teater dan pembuat film asal Prancis. Jouvet lahir di Crozon, Prancis 24 Desember 1887. Jouvet memiliki g...
County in Nevada, United States County in NevadaEureka CountyCountyEureka County Court HouseLocation within the U.S. state of NevadaNevada's location within the U.S.Coordinates: 39°59′N 116°16′W / 39.98°N 116.27°W / 39.98; -116.27Country United StatesState NevadaFounded1873; 151 years ago (1873)Named forEurekaSeatEurekaLargest communityCrescent ValleyArea • Total4,180 sq mi (10,800 km2) • Land4,...
Pertanian Umum Agribisnis Agroindustri Agronomi Ilmu pertanian Jelajah bebas Kebijakan pertanian Lahan usaha tani Mekanisasi pertanian Menteri Pertanian Perguruan tinggi pertanian Perguruan tinggi pertanian di Indonesia Permakultur Pertanian bebas ternak Pertanian berkelanjutan Pertanian ekstensif Pertanian intensif Pertanian organik Pertanian urban Peternakan Peternakan pabrik Wanatani Sejarah Sejarah pertanian Sejarah pertanian organik Revolusi pertanian Arab Revolusi pertanian Inggris Revo...
Norwegian pilot Müller with a 331 Squadron Hawker Hurricane at RAF Skeabrae in Orkney in 1941 Jens Einar Müller (30 November 1917 – 30 March 1999) was a Norwegian pilot trained in Little Norway in Canada and a prisoner of war in the German POW camp Stalag Luft III. He was one of only three men to escape to freedom in the Great Escape.[1] Early life Müller was born in Shanghai, China, the son of Norwegian engineer Einar Jønsberg Müller (1872–1943) and British actress Dais...
Pisang cokelatSetumpuk pisang cokelatNama lainPiscokJenisKudapanDaerahIndonesiaBahan utamaPisang, cokelat, kulit lumpiaHidangan serupaTuronSunting kotak info • L • BBantuan penggunaan templat ini Pisang cokelat atau kerap disingkat piscok,[1] adalah kudapan manis dari Indonesia yang terbuat dari irisan pisang dengan cokelat cair atau susu kental manis cokelat, yang dibungkus dalam kulit tepung tipis mirip crepe, atau lazim menggunakan kulit lumpia yang kemudian, digoreng...
Pantai di Usedom Usedom (bahasa Jerman) atau Uznam (bahasa Polandia) adalah sebuah pulau di Laut Baltik. Usedom terpisah dengan Pulau Wolin oleh Selat Świna, jalur utama yang menghubungkan Teluk Szczecin dengan Teluk Pomerania. Pulau ini dikuasai oleh Jerman dan Polandia. Luas wilayah dan populasi Usedom masing-masing ialah 445 km² dan 76.500 jiwa; 373 km² dan 31.500 jiwa di sisi Jerman dan sisanya 72 km² dan 45.000 jiwa di sisi Polandia. Semasa Perang Dunia II, sebuah kamp...
Artikel ini bukan mengenai Sanam Saeed. Sana SaeedSaeed pada tahun 2015Lahir22 September 1988 (umur 35)[1]Mumbai, Maharashtra, IndiaKebangsaanIndiaPekerjaanAktrisTahun aktif1999–sekarang Sana Abdul Ahad Saeed (lahir 22 September 1988)[1] adalah seorang aktris dan peragawati asal India, yang muncul dalam film-film Bollywood.[2] Dia pertama kali muncul sebagai artis cilik dalam film Kuch Kuch Hota Hai (1998). Filmografi Film Tahun Film Peran Catatan 1998 Kuch...
Largest city in Washington, United States This article is about the city. For other uses, see Seattle (disambiguation). City in Washington, United StatesSeattle Lushootseed: dᶻidᶻəlal̕ičCityDowntown Seattle skyline with Mount Rainier in the backgroundSpace Needle and Climate Pledge Arena, with the Olympic Mountains in the backgroundSeattle Great WheelPike Place MarketAmazon Spheres FlagSealWordmarkNickname(s): The Emerald City, Jet City, Rain CityMotto(s): The City of Flowers...
British central banker (born 1959) Andrew BaileyGovernor of the Bank of EnglandIncumbentAssumed office 16 March 2020Appointed bySajid JavidPreceded byMark CarneyChief Executive of the Financial Conduct AuthorityIn office1 July 2016 – 15 March 2020Preceded byTracey McDermottSucceeded byNikhil RathiDeputy Governor of the Bank of England for Prudential RegulationIn office1 April 2013 – 1 July 2016GovernorMark CarneyPreceded byOffice establishedSucceeded bySam WoodsChief...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2021) الإمبراطورية الرومانية في أقصى حد لها ، في عهد تراجان 117 م ديموغرافيًا، كانت الإمبراطورية الرومانية تمثل دولة ما قبل حديثة نموذجية. كان لديها معدل وفيات أطفا...
Dorcadion Dorcadion fuliginator Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Dorcadiini Genus: Dorcadion Dorcadion adalah genus kumbang tanduk panjang yang tergolong familia Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang k...
مسجد توران بشت إحداثيات 31°31′23″N 53°51′53″E / 31.523138888889°N 53.864694444444°E / 31.523138888889; 53.864694444444 معلومات عامة القرية أو المدينة مقاطعة تفت الدولة إيران تاريخ الافتتاح الرسمي 1432[1] أبعاد المبنى التفاصيل التقنية المواد المستخدمة طابوق، وملاط التصميم وا�...
Archaeological study of human interaction with the sea This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2009) (Learn how and when to remove this message) A maritime archaeologist with the Lighthouse Archaeological Maritime Program in St. Augustine, Florida, recording the ship's bell discovered on the 18th century Storm Wreck. Maritime archaeology (al...
Fencing at the Olympics Women's foilat the Games of the XIX OlympiadVenueFernando Montes de Oca Fencing HallDates19–20 OctoberCompetitors38 from 16 nationsMedalists Elena Belova Soviet Union Pilar Roldán Mexico Ildikó Ságiné Ujlakyné Rejtő Hungary← 19641972 → Fencing at the1968 Summer OlympicsÉpéemenTeam épéemenFoilmenwomenTeam foilmenwomenSabremenTeam sabremenvte The women's foil was one of eight fencing events on the fencing ...
Article principal : Coupe du monde de football 2018. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2022). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En...
American animated direct-to-video film and sequel to Scooby-Doo on Zombie Island Scooby-Doo!Return to Zombie IslandDVD coverDirected byCecilia Aranovich Hamilton & Ethan SpauldingWritten byJeremy AdamsBased onScooby-Dooby William Hanna, Joseph Barbera, Iwao Takamoto, Joe Ruby & Ken SpearsElviraby Cassandra PetersonProduced byJim Krieg, Amy McKenna & Rick MoralesStarringFrank Welker, Grey Griffin, Matthew Lillard & Kate MicucciMusic byRobert J. KralProductioncompanyWarner Bros....
Abbazia di San Fruttuoso di CapodimonteStato Italia RegioneLiguria LocalitàSan Fruttuoso (Camogli) IndirizzoVia San Fruttuoso, 13 - Camogli, Via San Fruttuoso di Camogli 13, 16032 Camogli e Via San Fruttuoso Di Camogli 13, 16032 Camogli Coordinate44°18′58″N 9°10′30″E44°18′58″N, 9°10′30″E Religionecattolica di rito romano TitolareFruttuoso di Tarragona Ordineordine di San Benedetto Arcidiocesi Genova Inizio costruzioneX - XI secolo Sito webweb.archive.org/web/20050905...
Monti ŚnieżnikContinenteEuropa Stati Polonia Rep. Ceca Catena principaleSudeti Orientali Cima più elevataKrálický Sněžník (1 425 m s.l.m.) Superficie276 km² I Monti Śnieżnik (in polacco: Masyw Śnieżnika; in lingua ceca: Králický Sněžník; in tedesco: Glatzer Schneegebirge) sono il massiccio montuoso più alto della parte polacca dei Sudeti Orientali; sono situati in Polonia al confine con la Repubblica Ceca. Amministrativamente fanno parte del Di...
الإمام جَعْفَرُ الصَّادِق تخطيط اسم الإمام جعفر الصَّادق ملحوق بدُعاء الرضا عنه كما نُقش في المسجد النبوي معلومات شخصية اسم الولادة جعفر بن مُحمَّد بن عليّ بن الحُسين الهاشميّ القُرشي الميلاد 17 ربيع الأول 80 هـ / 24 أبريل 699مالمدينة المنورة، الدولة الأموية الوفاة 25 شوال ...