Denis Auroux

Denis Auroux
Auroux in 2010
BornApril 1977 (age 47)
NationalityFrench
Alma materÉcole normale supérieure
Paris Diderot University
Pierre and Marie Curie University
Paris-Sud University
École polytechnique
Scientific career
FieldsMathematics
InstitutionsMassachusetts Institute of Technology
University of California, Berkeley
Harvard University

Denis Auroux (born April 1977)[1] is a French mathematician working in geometry and topology.

Education and career

Auroux was admitted in 1993 to the École normale supérieure (Paris). In 1994, he received a licentiate and maîtrise in mathematics from Paris Diderot University (Paris 7). In 1995, he received a licentiate in physics from Pierre and Marie Curie University (Paris 6) and passed the agrégation. In 1995, he received a master's degree in mathematics from Paris-Sud University with a thesis on Seiberg-Witten invariants of symplectic manifolds. In 1999, he received his doctorate from the École polytechnique with supervisors Jean-Pierre Bourguignon and Mikhael Gromov for a thesis on structure theorems for compact symplectic manifolds via almost-complex techniques. In 2003, he completed his habilitation at Paris-Sud University with a thesis on approximately holomorphic techniques and monodromy invariants in symplectic topology.

As a postdoc, he was a C. L. E. Moore Instructor at the Massachusetts Institute of Technology from 1999 to 2002, where he became an assistant professor in 2002, an associate professor in 2004 (tenured in 2006), and a professor in 2009 (on leave from 2009 to 2011). From 2009 to 2018, he was a professor at the University of California, Berkeley. Since Fall 2018, he has been at Harvard University,[2] where he taught Math 55, two-semester honors undergraduate course on algebra and analysis.[3]

His research deals with symplectic geometry, low-dimensional topology, and mirror symmetry.[4][5]

In 2002, he received the Prix Peccot from the Collège de France. In 2005, he received a Sloan Research Fellowship.[2] He was an invited speaker in 2010 with talk Fukaya Categories and bordered Heegaard-Floer Homology[6] at the International Congress of Mathematicians in Hyderabad and in 2004 at the European Congress of Mathematicians in Stockholm.[7]

Selected publications

  • Auroux, Denis (2000). "Symplectic 4-manifolds as branched coverings of 2". Inventiones Mathematicae. 139 (3): 551–602. Bibcode:2000InMat.139..551A. doi:10.1007/s002220050019. S2CID 9954552.
  • Auroux, Denis; Katzarkov, Ludmil (2000). "Branched coverings of 2 and invariants of symplectic 4-manifolds". Inventiones Mathematicae. 142 (3): 631–673. Bibcode:2000InMat.142..631A. doi:10.1007/PL00005795. S2CID 40984397.
  • Auroux, Denis; Donaldson, Simon K.; Katzarkov, Ludmil (2005). "Singular Lefschetz pencils". Geometry & Topology. 9 (2): 1043–1114. arXiv:math/0410332. doi:10.2140/gt.2005.9.1043. S2CID 2364993.
  • Auroux, Denis; Katzarkov, Ludmil; Orlov, Dmitri (2006). "Mirror symmetry for del Pezzo surfaces: Vanishing cycles and coherent sheaves". Inventiones Mathematicae. 166 (3): 537–582. arXiv:math/0506166. Bibcode:2006InMat.166..537A. doi:10.1007/s00222-006-0003-4. S2CID 5322441.
  • Auroux, Denis; Katzarkov, Ludmil; Orlov, Dmitri (2008). "Mirror Symmetry for Weighted Projective Planes and Their Noncommutative Deformations". Annals of Mathematics. 167 (3): 867–943. arXiv:math/0404281. doi:10.4007/annals.2008.167.867. JSTOR 40345366. S2CID 6989346.
  • Auroux, Denis; Smith, Ivan (2008). "Lefschetz pencils, branched covers and symplectic invariants". Symplectic 4-manifolds and algebraic surfaces (Cetraro, 2003). Lecture Notes in Mathematics. Vol. 1938. Springer. pp. 1–53. arXiv:math/0401021.
  • Auroux, Denis (2009). "Special Lagrangian fibrations, wall-crossing, and mirror symmetry". Surveys in Differential Geometry. 13: 1–47. arXiv:0902.1595. doi:10.4310/SDG.2008.v13.n1.a1. S2CID 15635047.
  • Auroux, Denis (2013). "A beginner's introduction to Fukaya categories". arXiv:1301.7056 [math.SG].
  • Abouzaid, Mohammed; Auroux, Denis; Efimov, Alexander I.; Katzarkov, Ludmil; Orlov, Dmitri (2013). "Homological mirror symmetry for punctured spheres". Journal of the American Mathematical Society. 26 (4): 1051–1083. arXiv:1103.4322. doi:10.1090/S0894-0347-2013-00770-5. S2CID 32592919.

References

  1. ^ https://people.math.harvard.edu/~auroux/cv.html
  2. ^ a b "Curriculum Vitae - Denis Auroux". Mathematics Department, Harvard University.
  3. ^ Yefremova, Anastasia (May 5, 2022). "Demystifying Math 55". Department of Mathematics, Harvard University. Archived from the original on August 8, 2022. Retrieved August 25, 2022.
  4. ^ "Denis Auroux". Mathematics Department, Harvard University.
  5. ^ "Denis Auroux - Papers". Mathematics Department, Harvard University. (with links to articles in pdf format)
  6. ^ Auroux, D. (2010). "Fukaya categories and bordered Heegaard-Floer homology". Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Vol. II. New Delhi: Hindustan Book Agency. pp. 917–941. arXiv:1003.2962. doi:10.1142/9789814324359_0080. ISBN 978-981-4324-30-4. S2CID 45582260.
  7. ^ Auroux, Denis (2004). "Some open questions about symplectic 4-manifolds, singular plane curves, and braid group factorizations". arXiv:math/0410119. (published in 2005 in Proceedings of the European Congress of Mathematics: Stockholm, June 27–July 2, 2004)

Read other articles:

Skanska ABJenisPublik AktiebolagKode emitenOMX: SKA BIndustriKonstruksiDidirikan1887; 136 tahun lalu (1887)KantorpusatStockholm, SwediaTokohkunciAnders Danielsson (Presiden & CEO)[1]Hans Biörck (Chairman)[2]ProdukPengembangan perumahan, pengembangan properti komersial, dan pengembangan infrastrukturPendapatanSEK 145,365 milyar (2016)[3]Laba operasiSEK 7,220 milyar (2016)[3]Laba bersihSEK 5,735 milyar (2016)[3]Total asetSEK 106,505 miliar ...

 

 

James Vaughan Informasi pribadiNama lengkap James Oliver VaughanTanggal lahir 14 Juli 1988 (umur 35)Tempat lahir Birmingham, InggrisTinggi 1,80 m (5 ft 11 in)Posisi bermain PenyerangInformasi klubKlub saat ini Huddersfield Town(pinjaman dari Norwich City)Nomor 18Karier junior2002–2004 EvertonKarier senior*Tahun Tim Tampil (Gol)2004–2011 Everton 47 (7)2009 → Derby County (pinjaman) 2 (0)2010 → Leicester City (pinjaman) 8 (1)2010 → Crystal Palace (pinjaman) 14 (5)...

 

 

Phil Hogan Komisioner Uni Eropa untuk Pertanian dan Pembangunan PedesaanPetahanaMulai menjabat 1 November 2014PresidenJean-Claude Juncker PendahuluDacian CioloșPenggantiPetahanaMenteri KeuanganMasa jabatan20 Desember 1994 – 27 Januari 1995TaoiseachJohn Bruton PendahuluNoel DempseyPenggantiAvril Doyle Informasi pribadiLahirPhilp Hogan4 Juli 1960 (umur 63)Kilkenny, IrlandiaPartai politikFine GaelAfiliasi politiklainnyaPartai Rakyat EropaSuami/istriCáit Ryan ​ ...

Rosalynn Carter Ibu Negara Amerika SerikatMasa jabatan20 Januari 1977 – 20 Januari 1981 PendahuluBetty FordPenggantiNancy Reagan Informasi pribadiLahirEleanor Rosalynn Smith(1927-08-18)18 Agustus 1927Plains, GeorgiaMeninggal19 November 2023(2023-11-19) (umur 96)Plains, GeorgiaKebangsaanAmerika SerikatPartai politikDemokratSuami/istriJimmy CarterHubunganEdgar Smith dan Frances Allethea MurrayAnakJohn William, James Earl, Donnel Jeffery, dan AmyTempat tinggalWhite House, Washing...

 

 

Большая синагога Стокгольма Иудаизм в Швеции (швед. Judar i Sverige) — совокупность религиозных и культурных традиций евреев, исторически проживающих на территории Швеции. История По указу 1782 года на территории шведского протектората черта еврейской оседлости была огранич...

 

 

Ryan Gravenberch Gravenberch dengan Bayern Munich pada tahun 2022Informasi pribadiNama lengkap Ryan Jiro Gravenberch[1]Tanggal lahir 16 Mei 2002 (umur 21)Tempat lahir Amsterdam, BelandaTinggi 190 m (623 ft 4 in)[2]Posisi bermain GelandangInformasi klubKlub saat ini Liverpool FCNomor 38Karier junior2009–2010 Zeeburgia2010–2018 AjaxKarier senior*Tahun Tim Tampil (Gol)2018–2020 Jong Ajax 44 (8)2018–2022 Ajax 72 (7)2022– Bayern Munich 25 (0)2023— L...

Theory of genetic influence Geneticism redirects here. For the profession, see Geneticist. Biological determinism, also known as genetic determinism,[1] is the belief that human behaviour is directly controlled by an individual's genes or some component of their physiology, generally at the expense of the role of the environment, whether in embryonic development or in learning.[2] Genetic reductionism is a similar concept, but it is distinct from genetic determinism in that th...

 

 

Edible animal product Chicken egg redirects here. For the causality dilemma, see Chicken or the egg. For the definition of the egg in biology, see Egg. For other uses, see Egg (disambiguation). This article is about eggs as food for people. For eggs as food hunted by animals, see egg predation. Fried eggs and carrots with Parmesan and cream Humans and their hominid relatives have consumed eggs for millions of years.[1] The most widely consumed eggs are those of fowl, especially chicke...

 

 

Association of lawyers in New York City New York City Bar AssociationFormation1870TypeLegal societyHeadquartersNew York City, New YorkLocationUnited StatesPresidentSusan J. KohlmannWebsitewww.nycbar.org The Association of the Bar of the City of New York, commonly referred to as the New York City Bar Association (City Bar), founded in 1870, is a voluntary association of lawyers and law students. Since 1896, the organization has been headquartered in a landmark building on 44th Street, between ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Oxfordshire – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this message) County of England Ceremonial county in EnglandOxfordshireCeremonial countyClockwise from top left: the Radcliffe Camera, part of the Universit...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Sebuah mobil yang ditempeli stiker berlambang Neihan Duanzi Neihan Duanzi (Hanzi: 内涵段子) adalah sebuah aplikasi asal Tiongkok yang berada di bawah naungan Toutiao yang mengedarkan lelucon, meme dan video lucu. Aplikasi tersebut dibentuk pada...

 

 

信徒Believe类型奇幻、科幻开创阿方索·卡隆主演 Johnny Sequoyah Jake McLaughlin Delroy Lindo 凯尔·麦克拉克伦 西耶娜·盖尔利 鄭智麟 Tracy Howe Arian Moayed 国家/地区美国语言英语季数1集数12每集长度43分钟制作执行制作 阿方索·卡隆 J·J·艾布拉姆斯 Mark Friedman 布赖恩·伯克 机位多镜头制作公司坏机器人制片公司华纳兄弟电视公司播出信息 首播频道全国广播公司播出日期2014年3月10日...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Различные глифы, представляющие букву a в гарнитуре Zapfino[англ.] Глиф (др.-греч. γλύφω «вырезаю; гравирую») — элемент письма, конкретное графическое представление графемы, иногда нескольких связанных графем — составной глиф, — или только части графемы, например �...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها.Learn how and when to remove this message شارع الوكالات شارع الوكالات ، شارع جميل مخصص للمشاة يقع في الصويفية جنوب غرب العاصمة عمان يحوي على العديد من المقاهي والمطاعم والبوتيكات.[1] يمارس ا...

ParlemenStasiun komuter PTVLokasiSpring StreetMelbourne, VictoriaAustraliaKoordinat37°48′41″S 144°58′23″E / 37.81139°S 144.97306°E / -37.81139; 144.97306Koordinat: 37°48′41″S 144°58′23″E / 37.81139°S 144.97306°E / -37.81139; 144.97306PemilikVicTrackOperatorMetro TrainsJalurMetro Trains  Alamein (hanya jam sibuk hari kerja)  Belgrave  Craigieburn  Cranbourne  Frankston (han...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

  لمعانٍ أخرى، طالع عشق أباد (توضيح). عشق أباد عشق آباد مدينة الاسم الرسمي Eshqabad الإحداثيات 34°22′01″N 56°55′52″E / 34.36694°N 56.93111°E / 34.36694; 56.93111 تقسيم إداري  الدولة  إيران  المحافظة خراسان جنوبي  المقاطعة مقاطعة طبس  الناحية Dastgerdan عدد السكان (2006)  المج�...

Member of the British Shadow Cabinet This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Shadow Chancellor of the Exchequer – news · newspapers · books · scholar · JSTOR (April 2011) Shadow Chancellor of the ExchequerIncumbentRachel Reevessince 9 May 2021AppointerLeader of the OppositionInaugural ...

 

 

Not to be confused with Münster in North Rhine-Westphalia or Munster in Ireland. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Munster, Lower Saxony – news · newspapers · books · scholar · JSTOR (April 2015) (Learn how and when to remove this message) Town in Lower Saxony, GermanyMunster (Örtze) TownWate...