Degeneration (algebraic geometry)

In algebraic geometry, a degeneration (or specialization) is the act of taking a limit of a family of varieties. Precisely, given a morphism

of a variety (or a scheme) to a curve C with origin 0 (e.g., affine or projective line), the fibers

form a family of varieties over C. Then the fiber may be thought of as the limit of as . One then says the family degenerates to the special fiber . The limiting process behaves nicely when is a flat morphism and, in that case, the degeneration is called a flat degeneration. Many authors assume degenerations to be flat.

When the family is trivial away from a special fiber; i.e., is independent of up to (coherent) isomorphisms, is called a general fiber.

Degenerations of curves

In the study of moduli of curves, the important point is to understand the boundaries of the moduli, which amounts to understand degenerations of curves.

Stability of invariants

Ruled-ness specializes. Precisely, Matsusaka'a theorem says

Let X be a normal irreducible projective scheme over a discrete valuation ring. If the generic fiber is ruled, then each irreducible component of the special fiber is also ruled.

Infinitesimal deformations

Let D = k[ε] be the ring of dual numbers over a field k and Y a scheme of finite type over k. Given a closed subscheme X of Y, by definition, an embedded first-order infinitesimal deformation of X is a closed subscheme X' of Y ×Spec(k) Spec(D) such that the projection X' → Spec D is flat and has X as the special fiber.

If Y = Spec A and X = Spec(A/I) are affine, then an embedded infinitesimal deformation amounts to an ideal I' of A[ε] such that A[ε]/ I' is flat over D and the image of I' in A = A[ε]/ε is I.

In general, given a pointed scheme (S, 0) and a scheme X, a morphism of schemes π: X'S is called the deformation of a scheme X if it is flat and the fiber of it over the distinguished point 0 of S is X. Thus, the above notion is a special case when S = Spec D and there is some choice of embedding.

See also

References

  • M. Artin, Lectures on Deformations of Singularities – Tata Institute of Fundamental Research, 1976
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • E. Sernesi: Deformations of algebraic schemes
  • M. Gross, M. Siebert, An invitation to toric degenerations
  • M. Kontsevich, Y. Soibelman: Affine structures and non-Archimedean analytic spaces, in: The unity of mathematics (P. Etingof, V. Retakh, I.M. Singer, eds.), 321–385, Progr. Math. 244, Birkh ̈auser 2006.
  • Karen E Smith, Vanishing, Singularities And Effective Bounds Via Prime Characteristic Local Algebra.
  • V. Alexeev, Ch. Birkenhake, and K. Hulek, Degenerations of Prym varieties, J. Reine Angew. Math. 553 (2002), 73–116.

Read other articles:

King of Thomond 17th century depiction of Donnchadh Donnchadh Cairbreach Ó Briain was King of Thomond from 1198 to his death in 1242. He founded Moor Abbey, (Galbally, Tipperary) early in the 13th century before it was re-founded in 1471 and established by the first Franciscan pontiff under the reign of Sixtus IV, a religious order founded by Saint Francis of Assisi. Reign He was one of the three sons of Domnall Mór Ua Briain. His father died in 1198 and his brother Muircheartach Dall was b...

 

 

Johann Marbach (14 April 1521 – 17 Maret 1581) adalah seorang kontroversialis dan reformator Lutheran Jerman. Johann Marbach, engravir karya Theodor de Bry. Kehidupan Ia lahir di Lindau, Bayern. Ia belajar di Strasbourg pada 1536, dan tiga tahun kemudian datang ke Wittenberg, dimana ia berbagi rumah dengan Martin Luther dan meraih gelar doktor pada 1543. Referensi https://archive.org/stream/newschaffherzog00haucgoog#page/n195/mode/2up Atribusi  Artikel ini memuat tek...

 

 

Berbagai kesalahan posisi fetus yang dapat menyebabkan distokia Distokia pada sapi adalah kesulitan melahirkan pada sapi. Kejadian distokia pada sapi diperkirakan sebesar 3,3%; kejadian ini lebih banyak pada ternak sapi perah dibandingkan pada sapi potong [1] Faktor penyebab Kasus distokia umumnya terjadi pada induk yang baru pertama kali beranak, induk yang masa kebuntingannya jauh melebihi waktu normal, induk yang terlalu cepat dikawinkan, hewan yang kurang bergerak, kelahiran kemba...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Izmir SmajlajInformasi pribadiLahir29 Maret 1993 (umur 30)Shkodër, AlbaniaTinggi190 m (623 ft 4 in)Berat80 kg (176 pon) OlahragaOlahragaAtletikLombaLompat jauhKlubTironaDilatih olehGjergj Ruli Rekam medali Atletik putra M...

 

 

American Hockey League team in Milwaukee, Wisconsin Milwaukee AdmiralsNicknameAddiesCityMilwaukee, WisconsinLeagueAmerican Hockey LeagueConferenceWesternDivisionCentralFounded1970 (As an amateur team)Home arenaUW–Milwaukee Panther ArenaColors       Owner(s)Group headed byHarris TurerGeneral managerScott NicholHead coachKarl TaylorCaptainKevin GravelMediaWVTV-DT2 My 24The Big 920Milwaukee Journal SentinelAHL.TV (Internet)AffiliatesNashville Predators (NHL)Atlanta Gla...

 

 

Fanny and AlexanderPoster rilis Swedia asliSutradaraIngmar BergmanProduserJörn DonnerDitulis olehIngmar BergmanPemeranPernilla AllwinBertil GuveBörje AhlstedtAnna BergmanGunn WållgrenKristina AdolphsonErland JosephsonMats BergmanJarl KullePenata musikDaniel BellSinematograferSven NykvistPenyuntingSylvia IngemarssonPerusahaanproduksiGaumontDistributorSandrew Film & Teater (Swedia)Gaumont (Prancis)Tanggal rilis 17 Desember 1982 (1982-12-17) (Sweden) 9 Maret 1983 (1983...

Membuat halaman Halaman pengguna Pembicaraan Profil saya Proyek saya Halaman saya Pencapaian saya Hello, Lets have a talk! Selamat datang di Halaman Pengguna saya! Apa yang dibahas Mungkin saran untuk menulis menggunakan source code di WBI Topik apa saja, karena saya ingin mempunyai teman baru di WBI Saya menyukai topik yang berhubungan dengan Sains, khususnya Geologi, Geokronologi, dan Astronomi. Dan yang pasti bukan fonologi. Remember that, Nyilvoskt Tips Selalu tanda tangani pertanyaan An...

 

 

Cet article est une ébauche concernant une université et la Slovénie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Université de LjubljanaHistoireFondation 1919StatutType Université publiqueForme juridique Public institute (d)Nom officiel Univerza v LjubljaniRégime linguistique slovèneRecteur Ivan SvetlikMembre de Union des universités de la Méditerranée, Réseau d'Utrecht, European Policy Institute...

 

 

Species of shark Taiwan saddled carpetshark Conservation status Vulnerable  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Orectolobiformes Family: Parascylliidae Genus: Cirrhoscyllium Species: C. formosanum Binomial name Cirrhoscyllium formosanumTeng, 1959 Range of Taiwan saddled carpetshark (in blue) Sharks portal The Taiwan saddled carpetshark (Ci...

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...

 

 

Prince of Antioch Raymond-RoupenPrince of AntiochReign1216–1219RivalBohemond IVKing of Armenian CiliciaReign1211–1219Senior kingLeo IBorn1198Died1221/1222SpouseHelvis of CyprusIssuemore...Maria, Lady of ToronHouseHouse of PoitiersFatherRaymond IV, Count of TripoliMotherAlice, Lady of Toron Raymond-Roupen (also Raymond-Rupen and Ruben-Raymond; 1198 – 1219 or 1221/1222) was a member of the House of Poitiers who claimed the thrones of the Principality of Antioch and Armenian Kingdom of...

 

 

PalauliDistrikLokasi di SamoaNegara SamoaIbu kotaVailoaLuas • Total523 km2 (202 sq mi)Populasi (2016) • Total9.317 • Kepadatan18/km2 (46/sq mi)Kode ISO 3166-2WS-PA Palauli adalah salah satu distrik di Samoa. Kode ISO 3166-2 distrik yang beribu kota di Vailoa ini adalah WS-PA. Menurut sensus 2016, jumlah penduduk distrik yang luasnya 523 kilometer persegi ini adalah 9.317 jiwa. Referensi Census 2016 Preliminary Count Report lbsD...

Una teoría económica es cada una de las hipótesis o modelos que pretenden explicar el funcionamiento de la realidad económica. La publicación de Adam Smith La riqueza de las naciones en 1776 es considerada una de las primeras formalizaciones de la economía clásica y de la filosofía de la economía. La publicación de Karl Marx El Capital: crítica de la economía política en 1867-1883 se considera un texto teórico fundamental en la filosofía, economía y política de la teoría eco...

 

 

Australian federal electoral division Australian electorate BarkerAustralian House of Representatives DivisionMapInteractive map of boundariesCreated1903MPTony PasinPartyLiberalNamesakeCollet BarkerElectors123,518 (2022)Area63,886 km2 (24,666.5 sq mi)DemographicRuralThe Division of Barker is an Australian electoral division in the south-east of South Australia. The division was established on 2 October 1903, when South Australia's original single multi-member division was ...

 

 

Nelle Chiese cristiane, l'enciclica è una lettera circolare inviata a tutte le Chiese di una certa area. In tale accezione, la parola può essere utilizzata per qualsiasi comunicazione di un singolo vescovo. Le prime parole determinano il titolo dell'enciclica. Il termine deriva dal greco enkýklos, in giro, in circolo, e dal latino encyclia che significa generale o circolare, ed è anche alla base del termine enciclopedia.[1] La Chiesa ortodossa e quella anglicana mantengono ancora ...

Commercial in Cebu City, PhilippinesCebu ExchangeGeneral informationStatusCompletedTypeCommercialArchitectural stylePostmodernTown or cityCebu CityCountryPhilippinesCoordinates10°19′38″N 123°54′18″E / 10.3273223°N 123.9049180°E / 10.3273223; 123.9049180Construction started2018Topped-out2020Completed2022Cost₱8 billionHeight164 m (538 ft)Technical detailsFloor count38Floor area108,490 m2 (1,167,800 sq ft)Lifts/elevators24Grounds8,44...

 

 

33°44′56″N 84°23′27″W / 33.748874°N 84.390735°W / 33.748874; -84.390735 Sporting event delegationYemen at the1996 Summer OlympicsIOC codeYEMNOCYemen Olympic CommitteeWebsitewww.nocyemen.org (in Arabic and English)in AtlantaCompetitors4 in 2 sportsFlag bearer Abdullah Al-IzaniMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)199219962000200420082012201620202024Other related appearances North Yemen (1984–1988) ...

 

 

Meelis ZaiaAM (Member of the Order of Australia)Metropolitan of Australia, New Zealand and LebanonChurchAssyrian Church of the East ܥܕܬܐ ܕܡܕܢܚܐ ܕܐܬܘܖ̈ܝܐMetropolisAustralia, New Zealand and LebanonInstalledMarch 1985OrdersOrdination21 October 1984 (as Bishop), 7 December 2008 (as Metropolitan)by Mar Dinkha IVRankMetropolitanPersonal detailsBorn (1956-08-05) August 5, 1956 (age 68)Baghdad, IraqNationalityAssyrianDenominationAssyrian Church of the EastResidenceNew So...

Species of flowering plant Echinacea paradoxa Conservation status Vulnerable  (NatureServe) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Asterales Family: Asteraceae Genus: Echinacea Species: E. paradoxa Binomial name Echinacea paradoxa(J. B. S. Norton) Britt. Synonyms[1] Brauneria paradoxa Norton Echinacea atrorubens var. paradoxa (Norton) Cronquist Echinacea atrorubens var. neglecta (McGregor) Bin...

 

 

扎囊县གྲ་ནང་རྫོང县扎囊县山南市下属行政区划坐标:29°15′11″N 91°20′11″E / 29.25299°N 91.33629°E / 29.25299; 91.33629国家 中华人民共和国隶属行政区西藏自治区山南市政府駐地扎塘镇下级行政区 5 2镇3乡 面积 • 总计2,148.82 平方公里(829.66 平方英里) 人口(2020) • 總計3.67万人时区北京时间(UTC+8)郵政編碼850800電�...