Deformed Hermitian Yang–Mills equation

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model (commonly called a B-brane) of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger[1] in the case of Abelian gauge group (the unitary group ), and by Leung–YauZaslow[2] using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

Definition

In this section we present the dHYM equation as explained in the mathematical literature by Collins-Xie-Yau.[3] The deformed Hermitian–Yang–Mills equation is a fully non-linear partial differential equation for a Hermitian metric on a line bundle over a compact Kähler manifold, or more generally for a real -form. Namely, suppose is a Kähler manifold and is a class. The case of a line bundle consists of setting where is the first Chern class of a holomorphic line bundle . Suppose that and consider the topological constant

Notice that depends only on the class of and . Suppose that . Then this is a complex number

for some real and angle which is uniquely determined.

Fix a smooth representative differential form in the class . For a smooth function write , and notice that . The deformed Hermitian Yang–Mills equation for with respect to is

The second condition should be seen as a positivity condition on solutions to the first equation. That is, one looks for solutions to the equation such that . This is in analogy to the related problem of finding Kähler-Einstein metrics by looking for metrics solving the Einstein equation, subject to the condition that is a Kähler potential (which is a positivity condition on the form ).

Discussion

Relation to Hermitian Yang–Mills equation

The dHYM equations can be transformed in several ways to illuminate several key properties of the equations. First, simple algebraic manipulation shows that the dHYM equation may be equivalently written

In this form, it is possible to see the relation between the dHYM equation and the regular Hermitian Yang–Mills equation. In particular, the dHYM equation should look like the regular HYM equation in the so-called large volume limit. Precisely, one replaces the Kähler form by for a positive integer , and allows . Notice that the phase for depends on . In fact, , and we can expand

Here we see that

and we see the dHYM equation for takes the form

for some topological constant determined by . Thus we see the leading order term in the dHYM equation is

which is just the HYM equation (replacing by if necessary).

Local form

The dHYM equation may also be written in local coordinates. Fix and holomorphic coordinates such that at the point , we have

Here for all as we assumed was a real form. Define the Lagrangian phase operator to be

Then simple computation shows that the dHYM equation in these local coordinates takes the form

where . In this form one sees that the dHYM equation is fully non-linear and elliptic.

Solutions

It is possible to use algebraic geometry to study the existence of solutions to the dHYM equation, as demonstrated by the work of Collins–Jacob–Yau and Collins–Yau.[4][5][6] Suppose that is any analytic subvariety of dimension . Define the central charge by

When the dimension of is 2, Collins–Jacob–Yau show that if , then there exists a solution of the dHYM equation in the class if and only if for every curve we have

[4]

In the specific example where , the blow-up of complex projective space, Jacob-Sheu show that admits a solution to the dHYM equation if and only if and for any , we similarly have

[7]

It has been shown by Gao Chen that in the so-called supercritical phase, where , algebraic conditions analogous to those above imply the existence of a solution to the dHYM equation.[8] This is achieved through comparisons between the dHYM and the so-called J-equation in Kähler geometry. The J-equation appears as the *small volume limit* of the dHYM equation, where is replaced by for a small real number and one allows .

In general it is conjectured that the existence of solutions to the dHYM equation for a class should be equivalent to the Bridgeland stability of the line bundle .[5][6] This is motivated both from comparisons with similar theorems in the non-deformed case, such as the famous Kobayashi–Hitchin correspondence which asserts that solutions exist to the HYM equations if and only if the underlying bundle is slope stable. It is also motivated by physical reasoning coming from string theory, which predicts that physically realistic B-branes (those admitting solutions to the dHYM equation for example) should correspond to Π-stability.[9]

Relation to string theory

Superstring theory predicts that spacetime is 10-dimensional, consisting of a Lorentzian manifold of dimension 4 (usually assumed to be Minkowski space or De sitter or anti-De Sitter space) along with a Calabi–Yau manifold of dimension 6 (which therefore has complex dimension 3). In this string theory open strings must satisfy Dirichlet boundary conditions on their endpoints. These conditions require that the end points of the string lie on so-called D-branes (D for Dirichlet), and there is much mathematical interest in describing these branes.

Open strings with endpoints fixed on D-branes

In the B-model of topological string theory, homological mirror symmetry suggests D-branes should be viewed as elements of the derived category of coherent sheaves on the Calabi–Yau 3-fold .[10] This characterisation is abstract, and the case of primary importance, at least for the purpose of phrasing the dHYM equation, is when a B-brane consists of a holomorphic submanifold and a holomorphic vector bundle over it (here would be viewed as the support of the coherent sheaf over ), possibly with a compatible Chern connection on the bundle.

This Chern connection arises from a choice of Hermitian metric on , with corresponding connection and curvature form . Ambient on the spacetime there is also a B-field or Kalb–Ramond field (not to be confused with the B in B-model), which is the string theoretic equivalent of the classical background electromagnetic field (hence the use of , which commonly denotes the magnetic field strength).[11] Mathematically the B-field is a gerbe or bundle gerbe over spacetime, which means consists of a collection of two-forms for an open cover of spacetime, but these forms may not agree on overlaps, where they must satisfy cocycle conditions in analogy with the transition functions of line bundles (0-gerbes).[12] This B-field has the property that when pulled back along the inclusion map the gerbe is trivial, which means the B-field may be identified with a globally defined two-form on , written . The differential form discussed above in this context is given by , and studying the dHYM equations in the special case where or equivalently should be seen as turning the B-field off or setting , which in string theory corresponds to a spacetime with no background higher electromagnetic field.

The dHYM equation describes the equations of motion for this D-brane in spacetime equipped with a B-field , and is derived from the corresponding equations of motion for A-branes through mirror symmetry.[1][2] Mathematically the A-model describes D-branes as elements of the Fukaya category of , special Lagrangian submanifolds of equipped with a flat unitary line bundle over them, and the equations of motion for these A-branes is understood. In the above section the dHYM equation has been phrased for the D6-brane .

See also

References

  1. ^ a b Marino, M., Minasian, R., Moore, G. and Strominger, A., Nonlinear instantons from supersymmetric p-branes. Journal of High Energy Physics, 2000(01), p.005.
  2. ^ a b Leung, N.C., Yau, S.T. and Zaslow, E., From special lagrangian to hermitian–Yang–Mills via Fourier–Mukai transform. Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–1341.
  3. ^ Collins, T.C., XIIE, D. and YAU, S.T.G., The Deformed Hermitian–Yang–Mills Equation in Geometry and Physics. Geometry and Physics: Volume 1: A Festschrift in Honour of Nigel Hitchin, 1, p. 69.
  4. ^ a b Collins, T.C., Jacob, A. and Yau, S.T., (1, 1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions. Camb. J. Math. 8 (2020), no. 2, 407–452.
  5. ^ a b Collins, T.C. and Yau, S.T., Moment maps, nonlinear PDE, and stability in mirror symmetry. arXiv preprint 2018, arXiv:1811.04824.
  6. ^ a b Collins, T.C. and Shi, Y., Stability and the deformed Hermitian–Yang–Mills equation. arXiv preprint 2020, arXiv:2004.04831.
  7. ^ A. Jacob, and N. Sheu, The deformed Hermitian–Yang–Mills equation on the blow-up of P^n, arXiv preprint 2020, arXiv:2009.00651
  8. ^ Chen, G., The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. (2021)
  9. ^ Douglas, M.R., Fiol, B. and Römelsberger, C., Stability and BPS branes. Journal of High Energy Physics, 2005(09), p.006.
  10. ^ Aspinwall, P.S., D-Branes on Calabi–Yau Manifolds. In Progress in String Theory: TASI 2003 Lecture Notes. Edited by MALDACENA JUAN M. Published by World Scientific Publishing Co. Pte. Ltd., 2005. ISBN 9789812775108, pp. 1–152 (pp. 1–152).
  11. ^ Freed, D.S. and Witten, E., Anomalies in string theory with $ D $-branes. Asian Journal of Mathematics, 3(4), pp. 819–852.
  12. ^ Laine, K., Geometric and topological aspects of Type IIB D-branes. Master's thesis (advisor Jouko Mickelsson), University of Helsinki

Read other articles:

Voce principale: UEFA Nations League 2020-2021. UEFA Nations League 2020-2021 - Lega C Competizione UEFA Nations League Sport Calcio Edizione 2ª Organizzatore UEFA Date dal 3 settembre 2020al 29 marzo 2022 Partecipanti 16 Risultati Promozioni Albania Armenia Montenegro Slovenia Retrocessioni Estonia Moldavia Statistiche Miglior marcatore Sokol Çikalleshi Stevan Jovetić Rauno Sappinen Haris Vučkić (4) Incontri disputati 52 Gol segnati 103 (1,98 per incontro) Pubblico 34...

 

Waltzing RegitzeSampul depan DVD Denmark untukWaltzing RegitzeSutradaraKaspar RostrupProduserLars KolvigDitulis olehKaspar RostrupMartha Christensen (novel)PemeranGhita NørbyFrits HelmuthHenning MoritzenPenata musikFuzzySinematograferClaus LoofPenyuntingGrete MøldrupDistributorNordisk FilmTanggal rilis17 November 1989Durasi87 menitNegaraDenmarkBahasaDenmark Waltzing Regitze, yang juga dikenal sebagai Memories of a Marriage, (Judul asli: Dansen med Regitze) adalah sebuah film drama Den...

 

County in Missouri, United States Not to be confused with Randolph, Missouri. 39°26′N 92°30′W / 39.43°N 92.50°W / 39.43; -92.50 County in MissouriRandolph CountyCountyThe Historic Randolph County Courthouse in HuntsvilleLocation within the U.S. state of MissouriMissouri's location within the U.S.Coordinates: 39°26′N 92°30′W / 39.43°N 92.5°W / 39.43; -92.5Country United StatesState MissouriFoundedJanuary 22, 1829Named fo...

الدوري الأسترالي لكرة القدم (A-League)   الجهة المنظمة اتحاد أستراليا لكرة القدم  تاريخ الإنشاء 2004  الرياضة كرة القدم  البلد أستراليا نيوزيلندا  الإتحاد الاتحاد الآسيوي لكرة القدم مسابقات متعلقة دوري أبطال آسيا الكأس المحلي كأس الاتحاد الأسترالي الراعي هيونداي ا...

 

.cd

.cd البلد جمهورية الكونغو الديمقراطية  الموقع الموقع الرسمي  تعديل مصدري - تعديل   cd. هو نطاق إنترنت من صِنف مستوى النطاقات العُليا في ترميز الدول والمناطق، للمواقع التي تنتمي لجمهورية الكونغو الديمقراطية.[1][2] مراجع ^ النطاق الأعلى في ترميز الدولة (بالإنجليز�...

 

Lampu pijar dan filamennya yang sedang menyala. Lampu pijar (Belanda: gloeilampcode: nl is deprecated , Inggris: lightbulb), pelentong (Bahasa Jawa : plentong) atau bohlam (Belanda: booglampcode: nl is deprecated ) adalah sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya.[1] Kaca yang menyelubungi filamen panas tersebut menghalangi udara untuk berhubungan dengannya sehingga filamen tidak akan lan...

Frankish noble This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Robert the Strong – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this template message) Robert the StrongCount of WormsCount of OrléansCount of AnjouCount of ToursCount of BloisRobert the Strong's imag...

 

Ini adalah nama Melayu; nama Md Rafik merupakan patronimik, bukan nama keluarga, dan tokoh ini dipanggil menggunakan nama depannya, Mohamed Farid. Kata bin (b.) atau binti (bt.), jika digunakan, berarti putra dari atau putri dari. Yang Berbahagia Datuk Wira Dr.Mohamed Farid Md RafikDCSMمحمد فريد محمد رافيق Wakil Menteri di Sekretariat Perdana Menteri Malaysia(Persatuan Nasional dan Kesejahteraan Sosial)Masa jabatan2 Juli 2018 – 21 September 2019Penguasa monarkiMuha...

 

The eastern side seen from Sandygate Road. The Towers is a small English country house situated in Sheffield, England. The house stands on Sandygate Road close to the junction with Coldwell Lane in the suburb of Crosspool. It is a Grade II listed building as is the lodge and attached gateway and the concave garden wall. It has been described as “an extraordinary Scottish baronial fantasy”.[1] History The Towers which is constructed in the Scottish Baronial style was built by the ...

保良局馬錦明夫人章馥仙中學Po Leung Kuk Mrs.Ma-Cheung Fook Sien College翻漆後的校舍東北面(2022年3月)地址 香港新界離島區大嶼山東涌富東邨类型津貼中學宗教背景無隶属保良局创办日期1997年学区香港離島區東涌校長柯玉琼女士副校长鄭健華先生,劉俊偉先生助理校长梁煥儀女士职员人数56人年级中一至中六学生人数約700人,24個班別校訓愛、敬、勤、誠校歌保良局屬下校歌�...

 

In rosso gli Stati in cui il sistema internazionale non è stato adottato come unico o principale sistema di misurazione: gli Stati Uniti d'America, la Liberia e la Birmania.[1] Il sistema consuetudinario statunitense (in inglese: United States Customary, acronimo: USC) è un sistema tecnico tuttora impiegato dalla maggioranza della popolazione, che si è sviluppato a partire dal sistema imperiale britannico. Tutte le unità consuetudinarie sono state riportate completamente alle unit...

 

UFC MMA events in 2005 2005 in UFCInformationFirst dateFeb 5, 2005Last dateNov 19, 2005EventsTotal events10UFC6UFC Fight Night2TUF Finale events2FightsTotal fights80Title fights9Chronology 2004 in UFC 2005 in UFC 2006 in UFC The year 2005 was the 13th year in the history of the Ultimate Fighting Championship (UFC), a mixed martial arts promotion based in the United States. In 2005 the UFC held 10 events beginning with, UFC 51: Super Saturday. The reality TV series The Ultimate Fighter and the...

Government minister Politics of Mali Constitution Human rights Slavery Government Interim President Assimi Goïta Interim Prime Minister Choguel Kokalla Maïga Council of Ministers Parliament National Assembly Speaker: Vacant Administrative divisions Regions Cercles Arrondissements Communes Elections Recent elections Presidential: 20182024 Parliamentary: 2020next Political parties Foreign relations Ministry of Foreign Affairs Minister: Abdoulaye Diop Diplomatic missions of / in Mali Passport ...

 

Frontera entre Irlanda y el Reino Unido Localización de Reino Unido (naranja) e Irlanda (verde). Vista de la línea de control en Irlanda.  Irlanda Reino Unido Reino Unido Longitud total 499 kmHistoriaCreación 3 de mayo de 1921Trazado actual 6 de diciembre de 1922[editar datos en Wikidata] La frontera entre Irlanda y el Reino Unido (en inglés The Republic of Ireland – United Kingdom border) es la frontera que separa a la nación constitutiva británica de Irlanda del ...

 

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...

Politics of Estonia State Constitution Declaration of Independence Human rights Presidency President Alar Karis Executive Prime Minister Kaja Kallas Government of Estonia Incumbent cabinet Legislature Riigikogu Speaker: Lauri Hussar Judiciary Supreme Court Chancellor of Justice Elections Political parties Recent elections Riigikogu:20192023next Presidential:201620212026 Municipal:201320172021 European: 201420192024 Administrative divisions Counties Municipalities Foreign relations Ministry o...

 

College men's basketball team representing the University of Virginia Virginia Cavaliers 2023–24 Virginia Cavaliers men's basketball team UniversityUniversity of VirginiaFirst season1905–06All-time record1719–1204–1 (.588)Athletic directorCarla WilliamsHead coachTony Bennett (15th season)ConferenceAtlantic Coast ConferenceLocationCharlottesville, VirginiaArenaJohn Paul Jones Arena (capacity: 14,623)NicknameCavaliers (official)Wahoos (unofficial)Student sectionHoo CrewColorsOrange ...

 

Pour les articles homonymes, voir General MacArthur. Douglas MacArthur Le général MacArthur à Manille le 2 août 1945, arborant sa fameuse pipe de maïs. Surnom Gaijin Shogun (le généralissime étranger) Dugout Doug Big Chief American Caesar (le César Américain)Sorcerer of Inchon (le sorcier d'Incheon)[1],[2] Naissance 26 janvier 1880Little Rock, États-Unis Décès 5 avril 1964 (à 84 ans)Washington, États-Unis Origine Américain Allégeance États-Unis Philippines Arme Armée ...

Armistice agreement ending the Second Nagorno-Karabakh War 2020 Nagorno-Karabakh ceasefire agreementStatement by the President of the Republic of Azerbaijan,the Prime Minister of the Republic of Armenia,and the President of the Russian FederationVladimir Putin and Ilham Aliyev signing the agreementvia videoconferenceTypeArmisticeContextSecond Nagorno-Karabakh WarSigned9 November 2020 (2020-11-09)Effective10 November 2020 (2020-11-10)Mediators Vladimir PutinSignat...

 

日本 > 東京都 > 新宿区 > 市谷田町 市谷田町 町丁 北緯35度41分43秒 東経139度44分16秒 / 北緯35.695167度 東経139.737872度 / 35.695167; 139.737872国 日本都道府県  東京特別区 新宿区地域 牛込地域 人口情報(2023年(令和5年)1月1日現在[1]) 人口 950 人 世帯数 531 世帯 面積([2])  0.111183198 km²人口密度 8544.46 人/km²郵�...