Dead-end elimination

The dead-end elimination algorithm (DEE) is a method for minimizing a function over a discrete set of independent variables. The basic idea is to identify "dead ends", i.e., combinations of variables that are not necessary to define a global minimum because there is always a way of replacing such combination by a better or equivalent one. Then we can refrain from searching such combinations further. Hence, dead-end elimination is a mirror image of dynamic programming, in which "good" combinations are identified and explored further.

Although the method itself is general, it has been developed and applied mainly to the problems of predicting and designing the structures of proteins (and in this wise was cited in the Scientific Background to the 2024 Nobel Prize in Chemistry).[1] It closely related to the notion of dominance in optimization also known as substitutability in a Constraint Satisfaction Problem. The original description and proof of the dead-end elimination theorem can be found in [1].

Basic requirements

An effective DEE implementation requires four pieces of information:

  1. A well-defined finite set of discrete independent variables
  2. A precomputed numerical value (considered the "energy") associated with each element in the set of variables (and possibly with their pairs, triples, etc.)
  3. A criterion or criteria for determining when an element is a "dead end", that is, when it cannot possibly be a member of the solution set
  4. An objective function (considered the "energy function") to be minimized

Note that the criteria can easily be reversed to identify the maximum of a given function as well.

Applications to protein structure prediction

Dead-end elimination has been used effectively to predict the structure of side chains on a given protein backbone structure by minimizing an energy function . The dihedral angle search space of the side chains is restricted to a discrete set of rotamers for each amino acid position in the protein (which is, obviously, of fixed length). The original DEE description included criteria for the elimination of single rotamers and of rotamer pairs, although this can be expanded.

In the following discussion, let be the length of the protein and let represent the rotamer of the side chain. Since atoms in proteins are assumed to interact only by two-body potentials, the energy may be written

Where represents the "self-energy" of a particular rotamer , and represents the "pair energy" of the rotamers .

Also note that (that is, the pair energy between a rotamer and itself) is taken to be zero, and thus does not affect the summations. This notation simplifies the description of the pairs criterion below.

Singles elimination criterion

If a particular rotamer of sidechain cannot possibly give a better energy than another rotamer of the same sidechain, then rotamer A can be eliminated from further consideration, which reduces the search space. Mathematically, this condition is expressed by the inequality

where is the minimum (best) energy possible between rotamer of sidechain and any rotamer X of side chain . Similarly, is the maximum (worst) energy possible between rotamer of sidechain and any rotamer X of side chain .

Pairs elimination criterion

The pairs criterion is more difficult to describe and to implement, but it adds significant eliminating power. For brevity, we define the shorthand variable that is the intrinsic energy of a pair of rotamers and at positions and , respectively

A given pair of rotamers and at positions and , respectively, cannot both be in the final solution (although one or the other may be) if there is another pair and that always gives a better energy. Expressed mathematically,

where , and .

Energy matrices

For large , the matrices of precomputed energies can become costly to store. Let be the number of amino acid positions, as above, and let be the number of rotamers at each position (this is usually, but not necessarily, constant over all positions). Each self-energy matrix for a given position requires entries, so the total number of self-energies to store is . Each pair energy matrix between two positions and , for discrete rotamers at each position, requires a matrix. This makes the total number of entries in an unreduced pair matrix . This can be trimmed somewhat, at the cost of additional complexity in implementation, because pair energies are symmetrical and the pair energy between a rotamer and itself is zero.

Implementation and efficiency

The above two criteria are normally applied iteratively until convergence, defined as the point at which no more rotamers or pairs can be eliminated. Since this is normally a reduction in the sample space by many orders of magnitude, simple enumeration will suffice to determine the minimum within this pared-down set.

Given this model, it is clear that the DEE algorithm is guaranteed to find the optimal solution; that is, it is a global optimization process. The single-rotamer search scales quadratically in time with total number of rotamers. The pair search scales cubically and is the slowest part of the algorithm (aside from energy calculations). This is a dramatic improvement over the brute-force enumeration which scales as .

A large-scale benchmark of DEE compared with alternative methods of protein structure prediction and design finds that DEE reliably converges to the optimal solution for protein lengths for which it runs in a reasonable amount of time[2]. It significantly outperforms the alternatives under consideration, which involved techniques derived from mean field theory, genetic algorithms, and the Monte Carlo method. However, the other algorithms are appreciably faster than DEE and thus can be applied to larger and more complex problems; their relative accuracy can be extrapolated from a comparison to the DEE solution within the scope of problems accessible to DEE.

Protein design

The preceding discussion implicitly assumed that the rotamers are all different orientations of the same amino acid side chain. That is, the sequence of the protein was assumed to be fixed. It is also possible to allow multiple side chains to "compete" over a position by including both types of side chains in the set of rotamers for that position. This allows a novel sequence to be designed onto a given protein backbone. A short zinc finger protein fold has been redesigned this way[3]. However, this greatly increases the number of rotamers per position and still requires a fixed protein length.

Generalizations

More powerful and more general criteria have been introduced that improve both the efficiency and the eliminating power of the method for both prediction and design applications. One example is a refinement of the singles elimination criterion known as the Goldstein criterion[4], which arises from fairly straightforward algebraic manipulation before applying the minimization:

Thus rotamer can be eliminated if any alternative rotamer from the set at contributes less to the total energy than . This is an improvement over the original criterion, which requires comparison of the best possible (that is, the smallest) energy contribution from with the worst possible contribution from an alternative rotamer.

An extended discussion of elaborate DEE criteria and a benchmark of their relative performance can be found in [5].

References

  1. ^ Desmet J, de Maeyer M, Hazes B, Lasters I. (1992). The dead-end elimination theorem and its use in protein side-chain positioning. Nature, 356, 539-542. PMID 21488406.
  2. ^ Voigt CA, Gordon DB, Mayo SL. (2000). Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. J Mol Biol 299(3):789-803.
  3. ^ Dahiyat BI, Mayo SL. (1997). De novo protein design: fully automated sequence selection. Science 278(5335):82-7.
  4. ^ Goldstein RF. (1994). Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 66(5):1335-40.
  5. ^ Pierce NA, Spriet JA, Desmet J, Mayo SL. (2000). Conformational splitting: a more powerful criterion for dead-end elimination. J Comput Chem 21: 999-1009.

Read other articles:

Basilika Bunda dari BatuBasilika Minor Bunda dari BatuPortugis: Basílica Igreja Matriz de Nossa Senhora da Penha de Françacode: pt is deprecated Basilika Bunda dari BatuLokasiSão PauloNegara BrasilDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Bunda dari Batu (Portugis: Igreja Matriz de Nossa Senhora da Penha de Françacode: pt is deprecated ) adalah sebuah gereja basilika minor Katolik yang terletak di São Paulo, Brasil. Basilika ini ditet...

 

Chronologies Données clés 1611 1612 1613  1614  1615 1616 1617Décennies :1580 1590 1600  1610  1620 1630 1640Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature, Musique classique et Théâtre   Ingénierie (), Architecture et ()   Politique Droit   Religion (,)   Science Santé et ...

 

Strada statale 562 del Golfo di PolicastroLocalizzazioneStato Italia Regioni Campania DatiClassificazioneStrada statale Inizioex SS 447 presso Palinuro Fineex SS 18 presso Policastro Bussentino Lunghezza35,830[1] km Provvedimento di istituzioneD.M. 1/07/1970 - G.U. 260 del 14/10/1970[2] GestoreTratte ANAS: nessuna (dal 2001 la gestione è passata alla Regione Campania che ha ulteriormente devoluto le competenze alla Provincia di Salerno) Manuale La ex strada statale ...

Alfa ExpressJenisTertutupIndustriToko swalayanKantorpusatJakarta, IndonesiaProdukToko swalayanPemilikAlfaCorp Logo lama Alfa Express Gerai Alfa Express di Ancol, Jakarta Utara pada tahun 2016 Alfa Express (digayakan sebagai Alfa express) adalah jaringan toko swalayan di Indonesia. Gerai ini umumnya menjual berbagai produk makanan, minuman dan barang kebutuhan hidup lainnya. Swalayan minimarket ini dirintis pertama kali di pertengahan 2005, oleh Djoko Susanto (yang juga merintis Alfamart dan A...

 

Pour les articles homonymes, voir Parterre. Parterres à Waddesdon Manor, en Angleterre Un parterre est la partie dégagée et plane d'un jardin d'agrément ou d'un parc formant par sa composition un ensemble décoratif. Régulièrement divisé par des allées en compartiments et en plates-bandes bordés de pierre ou de haies rigoureusement taillées, il est essentiellement garni de fleurs, herbes et arbustes. Généralement situé face au bâtiment principal d'une résidence ou à l'intéri...

 

2025 National Football League championship game 2025 Super Bowl redirects here. For the Super Bowl at the completion of the 2025 season, see Super Bowl LX. Super Bowl LIXDateFebruary 9, 2025StadiumCaesars Superdome, New Orleans, LouisianaTV in the United StatesNetworkBroadcast:FoxFox Deportes (Spanish)Streaming:NFL+/NFL.com/NFL appRadio in the United StatesNetworkWestwood One ← LVIII Super Bowl LX → Super Bowl LIX is the upcoming American football championship game of th...

Human settlement in Madhya Pradesh, India This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (November 2022) Nayagaon was a village and now a Nagar Panchayat in Jawad Tehsil, Neemuch district, Madhya Pradesh, India.[1] TownNayagaontownPopulation • Total6,699[2] 24°33′44″N 74°46′10″E / 24.562160°N 74.769516°E / 24.562160; 74...

 

Teluk California (terang) Teluk California (juga dikenal sebagai Laut Cortez atau Laut Cortés; secara lokal dikenal dalam bahasa Spanyol sebagai Mar de Cortés atau Mar de Bermejo atau Golfo de California) merupakan badan air yang memisahkan Semenanjung Baja California dari daratan Meksiko. Berbatasan dengan negara bagian Baja California, Baja California Sur, Sonora, dan Sinaloa. Nama Teluk California mendominasi peta-peta dalam bahasa Inggris hari ini. Nama Laut Cortés dipilih oleh pendudu...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Società Sportiva Dilettantistica Atessa Val di Sangro. Polisportiva Val di SangroStagione 2006-2007Sport calcio Squadra Atessa Val di Sangro Allenatore Vincenzo Cosco Presidente Amerigo Pellegrini (amministratore unico) Serie C26º posto nel girone C. Maggiori p...

1996 single by Nas featuring Lauryn HillIf I Ruled the WorldSingle by Nas featuring Lauryn Hillfrom the album It Was Written ReleasedJune 4, 1996Recorded1995GenreHip hopR&BLength4:42LabelColumbiaSongwriter(s)Nasir JonesKurt WalkerSamuel BarnesJean-Claude OlivierProducer(s)TrackmastersRashad SmithNas singles chronology One Love (1994) If I Ruled the World (1996) Street Dreams (1996) Lauryn Hill singles chronology If I Ruled The World (Imagine That)(1996) All My Time(1997) Music vid...

 

Chemical compound CUMYL-PICALegal statusLegal status CA: Schedule II DE: NpSG (Industrial and scientific use only) UK: Class B Identifiers IUPAC name 1-pentyl-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide CAS Number1400742-32-6 YPubChem CID86273678ChemSpider34450887UNIIH4APZ90T9UChemical and physical dataFormulaC23H28N2OMolar mass348.490 g·mol−13D model (JSmol)Interactive image SMILES O=C(NC(C)(C)C1=CC=CC=C1)C2=CN(CCCCC)C3=C2C=CC=C3 InChI InChI=1S/C23H28N2O/c1-4-...

 

Undang-Undang untuk Menyediakan Persenjataan Angkatan Laut Halaman kedua dari Undang-Undang tersebut Undang-Undang untuk Menyediakan Persenjataan sebuah Angkatan Laut, yang juga dikenal sebagai Undang-Undang Angkatan Laut 1794, atau disingkat Naval Act, disahkan oleh Kongres Amerika Serikat ke-3 pada 27 Maret 1794, dan ditandatangani untuk dijadikan hukum oleh Presiden George Washington.[1] Referensi ^ Launching the New U.S. Navy. National Archives (dalam bahasa Inggris). 2016-08-15. ...

SuippescomuneSuippes – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementChâlons-en-Champagne CantoneArgonne Suippe et Vesle TerritorioCoordinate49°08′N 4°32′E / 49.133333°N 4.533333°E49.133333; 4.533333 (Suippes)Coordinate: 49°08′N 4°32′E / 49.133333°N 4.533333°E49.133333; 4.533333 (Suippes) Superficie41,97 km² Abitanti3 991[1] (2009) Densità95,09 ab./km² Altre informazion...

 

Simon and Garfunkel Simon and Garfunkel en 1968.Informations générales Pays d'origine États-Unis Genre musical Folk rock Années actives 1957 – 19701981 – 1983 (réunion)2003 – 2004 (réunion)2009 – 2010 (réunion) Labels Columbia Site officiel www.simonandgarfunkel.com Composition du groupe Anciens membres Paul SimonArthur Garfunkel modifier Simon and Garfunkel [ˈsaɪmən ən gɑrfʌnkəl][1] est un duo américain de folk rock, originaire de Forest Hills, dans le Queens,...

 

Honje hutan Bunga majemuk honje hutan Etlingera hemisphaerica Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Monokotil (tanpa takson): Komelinid Ordo: Zingiberales Famili: Zingiberaceae Genus: Etlingera Spesies: E. hemisphaerica Nama binomial Etlingera hemisphaerica(Blume) R.M. Smith Sinonim Elettaria hemisphaerica Blume (1827) Nicolaia atropurpurea (Teijsm.& Binn.) Valeton (1904) Phaeomeria atropurpurea (Teijsm.& B...

German footballer Alexander Baumjohann Baumjohann training with Schalke 04 in 2011Personal informationDate of birth (1987-01-23) 23 January 1987 (age 37)Place of birth Waltrop, West GermanyHeight 1.78 m (5 ft 10 in)Position(s) Attacking Midfielder / Winger[1]Youth career1991–2000 Teutonia Waltrop2000–2005 Schalke 04Senior career*Years Team Apps (Gls)2005–2007 Schalke 04 II 29 (5)2005–2007 Schalke 04 2 (0)2007–2008 Borussia Mönchengladbach II 8 (2)2007–...

 

UAZ

Ulyanovsky Avtomobilny Zavod (UAZ)JenisSubsidiary of SeverstalAvtoIndustriAutomotiveDidirikan1941Kantorpusat UlyanovskProdukSUVsOff-roadersBusesTrucksSitus webOfficial UAZ websiteSeverstalAvto Site on UAZ UAZ adalah sebuah perusahaan mobil Rusia, didirikan pada tahun 1941. Perusahaan ini merupakan bagian dari SeverstalAvto. Pusat industrinya di Ulyanovsk, Rusia. Perusahaan ini menghasilkan berbagai macam kendaraan SUV. Pranala luar Wikimedia Commons memiliki media mengenai UAZ vehicles. Situs...

 

Coppa CEV femminile 1995-1996 Competizione Coppa CEV Sport Pallavolo Edizione XVI Organizzatore CEV Date dall'8 dicembre 1995al 3 marzo 1996 Partecipanti 48 Risultati Vincitore  Münster(3º titolo) Secondo  Emlakbank Terzo  Rossy Mosca Statistiche Incontri disputati 88 Cronologia della competizione 1994-95 1996-97 Manuale La Coppa CEV di pallavolo femminile 1995-1996 è stata la 16ª edizione del terzo torneo pallavolistico europeo per squadre di club; iniziata con l...

Church in Tuscany, Italy Church in Tuscany, ItalyFlorence CathedralCathedral of Saint Mary of the FlowerCattedrale di Santa Maria del FioreDuomo di Firenze (Italian)Cathedral Sanctae Mariae Floris (Latin)Brunelleschi's Dome, the nave, and Giotto's Campanile of the Cattedrale di Santa Maria del Fiore as seen from Michelangelo HillFlorence CathedralLocation in Florence, Italy43°46′23″N 11°15′25″E / 43.77306°N 11.25694°E / 43.77306; 11.25694LocationF...

 

北村西望 新潮社『芸術新潮』第4巻第3号(1953)より本名 北村 西望(きたむら にしも)[1]誕生日 1884年12月16日[2]出生地 日本 長崎県南高来郡南有馬村白木野[3](現・南島原市)死没年 (1987-03-04) 1987年3月4日(102歳没)死没地 東京都武蔵野市[2]国籍 日本芸術分野 彫刻出身校 京都市立美術工芸学校彫刻科(現・京都市立銅駝美術工芸高等学校)、東...