Courcelle's theorem

In the study of graph algorithms, Courcelle's theorem is the statement that every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded treewidth.[1][2][3] The result was first proved by Bruno Courcelle in 1990[4] and independently rediscovered by Borie, Parker & Tovey (1992).[5] It is considered the archetype of algorithmic meta-theorems.[6][7]

Formulations

Vertex sets

In one variation of monadic second-order graph logic known as MSO1, the graph is described by a set of vertices and a binary adjacency relation , and the restriction to monadic logic means that the graph property in question may be defined in terms of sets of vertices of the given graph, but not in terms of sets of edges, or sets of tuples of vertices.

As an example, the property of a graph being colorable with three colors (represented by three sets of vertices , , and ) may be defined by the monadic second-order formula with the naming convention that uppercase variables denote sets of vertices and lowercase variables denote individual vertices (so that an explicit declaration of which is which can be omitted from the formula). The first part of this formula ensures that the three color classes cover all the vertices of the graph, and the rest ensures that they each form an independent set. (It would also be possible to add clauses to the formula to ensure that the three color classes are disjoint, but this makes no difference to the result.) Thus, by Courcelle's theorem, 3-colorability of graphs of bounded treewidth may be tested in linear time.

For this variation of graph logic, Courcelle's theorem can be extended from treewidth to clique-width: for every fixed MSO1 property , and every fixed bound on the clique-width of a graph, there is a linear-time algorithm for testing whether a graph of clique-width at most has property .[8] The original formulation of this result required the input graph to be given together with a construction proving that it has bounded clique-width, but later approximation algorithms for clique-width removed this requirement.[9]

Edge sets

Courcelle's theorem may also be used with a stronger variation of monadic second-order logic known as MSO2. In this formulation, a graph is represented by a set V of vertices, a set E of edges, and an incidence relation between vertices and edges. This variation allows quantification over sets of vertices or edges, but not over more complex relations on tuples of vertices or edges.

For instance, the property of having a Hamiltonian cycle may be expressed in MSO2 by describing the cycle as a set of edges that includes exactly two edges incident to each vertex, such that every nonempty proper subset of vertices has an edge in the putative cycle with exactly one endpoint in the subset. However, Hamiltonicity cannot be expressed in MSO1.[10]

Labeled graphs

It is possible to apply the same results to graphs in which the vertices or edges have labels from a fixed finite set, either by augmenting the graph logic to incorporate predicates describing the labels, or by representing the labels by unquantified vertex set or edge set variables.[11]

Modular congruences

Another direction for extending Courcelle's theorem concerns logical formulas that include predicates for counting the size of the test. In this context, it is not possible to perform arbitrary arithmetic operations on set sizes, nor even to test whether two sets have the same size. However, MSO1 and MSO2 can be extended to logics called CMSO1 and CMSO2, that include for every two constants q and r a predicate which tests whether the cardinality of set S is congruent to r modulo q. Courcelle's theorem can be extended to these logics.[4]

Decision versus optimization

As stated above, Courcelle's theorem applies primarily to decision problems: does a graph have a property or not. However, the same methods also allow the solution to optimization problems in which the vertices or edges of a graph have integer weights, and one seeks the minimum or maximum weight vertex set that satisfies a given property, expressed in second-order logic. These optimization problems can be solved in linear time on graphs of bounded clique-width.[8][11]

Space complexity

Rather than bounding the time complexity of an algorithm that recognizes an MSO property on bounded-treewidth graphs, it is also possible to analyze the space complexity of such an algorithm; that is, the amount of memory needed above and beyond the size of the input itself (which is assumed to be represented in a read-only way so that its space requirements cannot be put to other purposes). In particular, it is possible to recognize the graphs of bounded treewidth, and any MSO property on these graphs, by a deterministic Turing machine that uses only logarithmic space.[12]

Proof strategy and complexity

The typical approach to proving Courcelle's theorem involves the construction of a finite bottom-up tree automaton that acts on the tree decompositions of the given graph.[6]

In more detail, two graphs G1 and G2, each with a specified subset T of vertices called terminals, may be defined to be equivalent with respect to an MSO formula F if, for all other graphs H whose intersection with G1 and G2 consists only of vertices in T, the two graphs G1 ∪ H and G2 ∪ H behave the same with respect to F: either they both model F or they both do not model F. This is an equivalence relation, and it can be shown by induction on the length of F that (when the sizes of T and F are both bounded) it has finitely many equivalence classes.[13]

A tree decomposition of a given graph G consists of a tree and, for each tree node, a subset of the vertices of G called a bag. It must satisfy two properties: for each vertex v of G, the bags containing v must be associated with a contiguous subtree of the tree, and for each edge uv of G, there must be a bag containing both u and v. The vertices in a bag can be thought of as the terminals of a subgraph of G, represented by the subtree of the tree decomposition descending from that bag. When G has bounded treewidth, it has a tree decomposition in which all bags have bounded size, and such a decomposition can be found in fixed-parameter tractable time.[14] Moreover, it is possible to choose this tree decomposition so that it forms a binary tree, with only two child subtrees per bag. Therefore, it is possible to perform a bottom-up computation on this tree decomposition, computing an identifier for the equivalence class of the subtree rooted at each bag by combining the edges represented within the bag with the two identifiers for the equivalence classes of its two children.[15]

The size of the automaton constructed in this way is not an elementary function of the size of the input MSO formula. This non-elementary complexity is necessary, in the sense that (unless P = NP) it is not possible to test MSO properties on trees in a time that is fixed-parameter tractable with an elementary dependence on the parameter.[16]

Bojańczyk-Pilipczuk's theorem

The proofs of Courcelle's theorem show a stronger result: not only can every (counting) monadic second-order property be recognized in linear time for graphs of bounded treewidth, but also it can be recognized by a finite-state tree automaton. Courcelle conjectured a converse to this: if a property of graphs of bounded treewidth is recognized by a tree automaton, then it can be defined in counting monadic second-order logic. In 1998 Lapoire (1998), claimed a resolution of the conjecture.[17] However, the proof is widely regarded as unsatisfactory.[18][19] Until 2016, only a few special cases were resolved: in particular, the conjecture has been proved for graphs of treewidth at most three,[20] for k-connected graphs of treewidth k, for graphs of constant treewidth and chordality, and for k-outerplanar graphs. The general version of the conjecture was finally proved by Mikołaj Bojańczyk and Michał Pilipczuk.[21]

Moreover, for Halin graphs (a special case of treewidth three graphs) counting is not needed: for these graphs, every property that can be recognized by a tree automaton can also be defined in monadic second-order logic. The same is true more generally for certain classes of graphs in which a tree decomposition can itself be described in MSOL. However, it cannot be true for all graphs of bounded treewidth, because in general counting adds extra power over monadic second-order logic without counting. For instance, the graphs with an even number of vertices can be recognized using counting, but not without.[19]

Satisfiability and Seese's theorem

The satisfiability problem for a formula of monadic second-order logic is the problem of determining whether there exists at least one graph (possibly within a restricted family of graphs) for which the formula is true. For arbitrary graph families, and arbitrary formulas, this problem is undecidable. However, satisfiability of MSO2 formulas is decidable for the graphs of bounded treewidth, and satisfiability of MSO1 formulas is decidable for graphs of bounded clique-width. The proof involves building a tree automaton for the formula and then testing whether the automaton has an accepting path.

As a partial converse, Seese (1991) proved that, whenever a family of graphs has a decidable MSO2 satisfiability problem, the family must have bounded treewidth. The proof is based on a theorem of Robertson and Seymour that the families of graphs with unbounded treewidth have arbitrarily large grid minors.[22] Seese also conjectured that every family of graphs with a decidable MSO1 satisfiability problem must have bounded clique-width; this has not been proven, but a weakening of the conjecture that replaces MSO1 by CMSO1 is true.[23]

Applications

Grohe (2001) used Courcelle's theorem to show that computing the crossing number of a graph G is fixed-parameter tractable with a quadratic dependence on the size of G, improving a cubic-time algorithm based on the Robertson–Seymour theorem. An additional later improvement to linear time by Kawarabayashi & Reed (2007) follows the same approach. If the given graph G has small treewidth, Courcelle's theorem can be applied directly to this problem. On the other hand, if G has large treewidth, then it contains a large grid minor, within which the graph can be simplified while leaving the crossing number unchanged. Grohe's algorithm performs these simplifications until the remaining graph has a small treewidth, and then applies Courcelle's theorem to solve the reduced subproblem.[24][25]

Gottlob & Lee (2007) observed that Courcelle's theorem applies to several problems of finding minimum multi-way cuts in a graph, when the structure formed by the graph and the set of cut pairs has bounded treewidth. As a result they obtain a fixed-parameter tractable algorithm for these problems, parameterized by a single parameter, treewidth, improving previous solutions that had combined multiple parameters.[26]

In computational topology, Burton & Downey (2014) extend Courcelle's theorem from MSO2 to a form of monadic second-order logic on simplicial complexes of bounded dimension that allows quantification over simplices of any fixed dimension. As a consequence, they show how to compute certain quantum invariants of 3-manifolds as well as how to solve certain problems in discrete Morse theory efficiently, when the manifold has a triangulation (avoiding degenerate simplices) whose dual graph has small treewidth.[27]

Methods based on Courcelle's theorem have also been applied to database theory,[28] knowledge representation and reasoning,[29] automata theory,[30] and model checking.[31]

References

  1. ^ Eger, Steffen (2008), Regular Languages, Tree Width, and Courcelle's Theorem: An Introduction, VDM Publishing, ISBN 9783639076332.
  2. ^ Courcelle, Bruno; Engelfriet, Joost (2012), Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach (PDF), Encyclopedia of Mathematics and its Applications, vol. 138, Cambridge University Press, ISBN 9781139644006, Zbl 1257.68006.
  3. ^ Downey, Rodney G.; Fellows, Michael R. (2013), "Chapter 13: Courcelle's theorem", Fundamentals of parameterized complexity, Texts in Computer Science, London: Springer, pp. 265–278, CiteSeerX 10.1.1.456.2729, doi:10.1007/978-1-4471-5559-1, ISBN 978-1-4471-5558-4, MR 3154461, S2CID 23517218.
  4. ^ a b Courcelle, Bruno (1990), "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs", Information and Computation, 85 (1): 12–75, doi:10.1016/0890-5401(90)90043-H, MR 1042649, Zbl 0722.03008
  5. ^ Borie, Richard B.; Parker, R. Gary; Tovey, Craig A. (1992), "Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families", Algorithmica, 7 (5–6): 555–581, doi:10.1007/BF01758777, MR 1154588, S2CID 22623740.
  6. ^ a b Kneis, Joachim; Langer, Alexander (2009), "A practical approach to Courcelle's theorem", Electronic Notes in Theoretical Computer Science, 251: 65–81, doi:10.1016/j.entcs.2009.08.028.
  7. ^ Lampis, Michael (2010), "Algorithmic meta-theorems for restrictions of treewidth", in de Berg, Mark; Meyer, Ulrich (eds.), Proc. 18th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, vol. 6346, Springer, pp. 549–560, doi:10.1007/978-3-642-15775-2_47, ISBN 978-3-642-15774-5, Zbl 1287.68078.
  8. ^ a b Courcelle, B.; Makowsky, J. A.; Rotics, U. (2000), "Linear time solvable optimization problems on graphs of bounded clique-width", Theory of Computing Systems, 33 (2): 125–150, CiteSeerX 10.1.1.414.1845, doi:10.1007/s002249910009, MR 1739644, S2CID 15402031, Zbl 1009.68102.
  9. ^ Oum, Sang-il; Seymour, Paul (2006), "Approximating clique-width and branch-width", Journal of Combinatorial Theory, Series B, 96 (4): 514–528, doi:10.1016/j.jctb.2005.10.006, MR 2232389.
  10. ^ Courcelle & Engelfriet (2012), Proposition 5.13, p. 338.
  11. ^ a b Arnborg, Stefan; Lagergren, Jens; Seese, Detlef (1991), "Easy problems for tree-decomposable graphs", Journal of Algorithms, 12 (2): 308–340, CiteSeerX 10.1.1.12.2544, doi:10.1016/0196-6774(91)90006-K, MR 1105479.
  12. ^ Elberfeld, Michael; Jakoby, Andreas; Tantau, Till (October 2010), "Logspace Versions of the Theorems of Bodlaender and Courcelle" (PDF), Proc. 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 143–152, doi:10.1109/FOCS.2010.21, ISBN 978-1-4244-8525-3, S2CID 1820251.
  13. ^ Downey & Fellows (2013), Theorem 13.1.1, p. 266.
  14. ^ Downey & Fellows (2013), Section 10.5: Bodlaender's theorem, pp. 195–203.
  15. ^ Downey & Fellows (2013), Section 12.6: Tree automata, pp. 237–247.
  16. ^ Frick, Markus; Grohe, Martin (2004), "The complexity of first-order and monadic second-order logic revisited", Annals of Pure and Applied Logic, 130 (1–3): 3–31, CiteSeerX 10.1.1.104.8429, doi:10.1016/j.apal.2004.01.007, MR 2092847.
  17. ^ Lapoire, Denis (1998), "Recognizability equals monadic second-order definability for sets of graphs of bounded tree-width", STACS 98: 15th Annual Symposium on Theoretical Aspects of Computer Science Paris, France, February 27, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1373, pp. 618–628, Bibcode:1998LNCS.1373..618L, CiteSeerX 10.1.1.22.7805, doi:10.1007/bfb0028596, ISBN 978-3-540-64230-5.
  18. ^ Courcelle, B.; Engelfriet., J. (2012), "Graph Structure and Monadic Second Order Logic -- A Language-Theoretic Approach", Encyclopedia of mathematics and its applications, vol. 138, Cambridge University Press.
  19. ^ a b Jaffke, Lars; Bodlaender, Hans L. (2015), MSOL-definability equals recognizability for Halin graphs and bounded degree k-outerplanar graphs, arXiv:1503.01604, Bibcode:2015arXiv150301604J.
  20. ^ Kaller, D. (2000), "Definability equals recognizability of partial 3-trees and k-connected partial k-trees", Algorithmica, 27 (3): 348–381, doi:10.1007/s004530010024, S2CID 39798483.
  21. ^ Bojańczyk, Mikołaj; Pilipczuk, Michał (2016), "Definability equals recognizability for graphs of bounded treewidth", Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), pp. 407–416, arXiv:1605.03045, doi:10.1145/2933575.2934508, ISBN 978-1-4503-4391-6, S2CID 1213054.
  22. ^ Seese, D. (1991), "The structure of the models of decidable monadic theories of graphs", Annals of Pure and Applied Logic, 53 (2): 169–195, doi:10.1016/0168-0072(91)90054-P, MR 1114848.
  23. ^ Courcelle, Bruno; Oum, Sang-il (2007), "Vertex-minors, monadic second-order logic, and a conjecture by Seese" (PDF), Journal of Combinatorial Theory, Series B, 97 (1): 91–126, doi:10.1016/j.jctb.2006.04.003, MR 2278126.
  24. ^ Grohe, Martin (2001), "Computing crossing numbers in quadratic time", Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC '01), pp. 231–236, arXiv:cs/0009010, doi:10.1145/380752.380805, ISBN 1-58113-349-9, S2CID 724544.
  25. ^ Kawarabayashi, Ken-ichi; Reed, Bruce (2007), "Computing crossing number in linear time", Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC '07), pp. 382–390, doi:10.1145/1250790.1250848, ISBN 978-1-59593-631-8, S2CID 13000831.
  26. ^ Gottlob, Georg; Lee, Stephanie Tien (2007), "A logical approach to multicut problems", Information Processing Letters, 103 (4): 136–141, doi:10.1016/j.ipl.2007.03.005, MR 2330167.
  27. ^ Burton, Benjamin A.; Downey, Rodney G. (2014), Courcelle's theorem for triangulations, arXiv:1403.2926, Bibcode:2014arXiv1403.2926B. Short communication, International Congress of Mathematicians, 2014.
  28. ^ Grohe, Martin; Mariño, Julian (1999), "Definability and descriptive complexity on databases of bounded tree-width", Database Theory — ICDT'99: 7th International Conference Jerusalem, Israel, January 10–12, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1540, pp. 70–82, CiteSeerX 10.1.1.52.2984, doi:10.1007/3-540-49257-7_6, ISBN 978-3-540-65452-0.
  29. ^ Gottlob, Georg; Pichler, Reinhard; Wei, Fang (January 2010), "Bounded treewidth as a key to tractability of knowledge representation and reasoning", Artificial Intelligence, 174 (1): 105–132, doi:10.1016/j.artint.2009.10.003.
  30. ^ Madhusudan, P.; Parlato, Gennaro (2011), "The Tree Width of Auxiliary Storage", Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '11) (PDF), SIGPLAN Notices, vol. 46, pp. 283–294, doi:10.1145/1926385.1926419, ISBN 978-1-4503-0490-0, S2CID 6976816
  31. ^ Obdržálek, Jan (2003), "Fast mu-calculus model checking when tree-width is bounded", Computer Aided Verification: 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, Lecture Notes in Computer Science, vol. 2725, pp. 80–92, CiteSeerX 10.1.1.2.4843, doi:10.1007/978-3-540-45069-6_7, ISBN 978-3-540-40524-5.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Frieska Anastasia LaksaniLahirFrieska Anastasia Laksani4 Maret 1996 (umur 28)Kota Bandung, Jawa Barat, IndonesiaKebangsaanIndonesiaNama lainFrieskaAlmamaterUniversitas Kristen MaranathaPekerjaan Aktris Penyanyi Penari Presenter Tahun aktif2011 - SekarangKeluarga Melody Nurramdhani Laksani (kakak) PenghargaanPeringkat 19 (Undergirls)—Pemilihan Member Single ke-10 JKT48 (2015)Peringkat 12 (Senbatsu)—Pemilihan Member Single ke-17 JKT48 (2017)Peringkat 31 (Undergirls)—Pemili...

 

 

Дроздовые Чёрный дрозд Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКл�...

Pour les articles homonymes, voir Villiers. Cet article est une ébauche concernant une commune de la Marne. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aid...

 

 

Nakano 中野区Distrik kota istimewa BenderaLambangLokasi Nakano di Prefektur TokyoNegara JepangWilayahKantōPrefektur TōkyōPemerintahan • Wali kotaNaoto SakaiLuas • Total15,6 km2 (60 sq mi)Populasi (Oktober 1, 2015) • Total328.215 • Kepadatan21,039/km2 (54,49/sq mi)Zona waktuUTC+9 (WSJ)Kode pos164-8501Simbol • PohonCastanopsis• BungaRhododendronNomor telepon03-3389-1111Alamat4-8-1 Nakano, Naka...

 

 

EMC2 المعرفات الأسماء المستعارة EMC2, KIAA0103, TTC35, ER membrane protein complex subunit 2 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 607722 MGI: MGI:1913986 HomoloGene: 8785 GeneCards: 9694 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني المكونات الخلوية • سيتوبلازم• EMC complex• شبكة إندوبلازمية...

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

 

 

1966 Trophées de France Previous 1965 Next 1967 The 1966 Trophées de France season was the 3rd season of the Trophées de France. The season was totally dominated by Brabham. Despite winning the World Championship for Drivers, Jack Brabham found time to win four of the six races to win this title as well. This was done, driving for his own team, Brabham Racing Organisation, piloting either a Brabham BT18, or a BT21. The others two races were won by Denny Hulme, also for racing for the Brab...

 

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

v · m Autriche au Concours Eurovision de la chanson Participation 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 à 1970 1971 1972 1973 à 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 à 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Représentants Années 1950 1957 : Bob Martin 1958 : Liane Augustin 1959...

 

 

Akademi Ilmu Pengetahuan Indonesia AIPIGambaran umumSingkatanAIPIDasar hukum pendirianUndang-Undang Nomor 8 Tahun 1990SifatMandiriStrukturKetuaDaniel MurdiyarsoWakil KetuaHarkristuti HarkrisnowoKetua Komisi KebudayaanM. Amin AbdullahKetua Komisi Ilmu Pengetahuan DasarJatna SupriatnaKetua Komisi Ilmu KedokteranHerawati SudoyoKetua Komisi Ilmu RekayasaMuljowidodo KartidjoKetua Komisi Ilmu SosialMayling Oey-GardinerKantor pusatGedung Perpustakaan Nasional RI Lt. 17-18 Jalan Medan Merdeka Selatan...

 

 

2002 cricket tournament held in Sri Lanka Cricket tournament 2002 ICC Champions TrophyAdministrator(s)International Cricket CouncilCricket formatOne Day InternationalTournament format(s)Round-robin and knockoutHost(s) Sri LankaChampions India Sri Lanka (1st title)Participants12Most runs Virender Sehwag (271)Most wickets Muttiah Muralitharan (10)← 20002004 → The 2002 ICC Champions Trophy was a cricket tournament held in Sri Lanka in 2002. It marked the third edition ...

Persema MalangNama lengkapPersatuan Sepakbola MalangJulukanBledeg BiruBerdiri 4 November 1933; 90 tahun lalu (1933-11-04) sebagai PSIM (Persatoean Sepakbola Indonesia Malang) 8 Oktober 1934; 89 tahun lalu (1934-10-08) sebagai PST (Persatoean Sepakbola Toemapel) 27 Mei 1939; 85 tahun lalu (1939-05-27) sebagai PERSIM (Persatoean Sepakbola Indonesia Malang) 1953; 71 tahun lalu (1953) sebagai PERSEMA (Persatuan Sepakbola Malang) StadionStadion Gajayana, Kota Malang, Provinsi J...

 

 

Illustrations of intracrine, paracrine, autocrine and endocrine Intracrine refers to a hormone that acts inside a cell, regulating intracellular events. In simple terms it means that the cell stimulates itself by cellular production of a factor that acts within the cell. Steroid hormones act through intracellular (mostly nuclear) receptors and, thus, may be considered to be intracrines. In contrast, peptide or protein hormones, in general, act as endocrines, autocrines, or paracrines by bindi...

 

 

Chinese economist For other people named David Li, see David Li (disambiguation). In this Chinese name, the family name is Li.Li Daokui李稻葵Born (1963-12-22) December 22, 1963 (age 60)Beijing, ChinaNationalityChineseEducationHarvard University (PhD - Economics) Li Daokui (Chinese: 李稻葵; pinyin: Lǐ Dàokúi; born 22 December 1963) is a Chinese economist and the Mansfield Freeman Professor of Economics and director of the Center for China in the World Economy (CCWE) at Ts...

دينيس سواريز (بالإسبانية: Denis Suárez)‏  معلومات شخصية الاسم الكامل دينيس سواريز فيرنانديز الميلاد 6 يناير 1994 (العمر 30 سنة)سالثيدا دي كاسيلاس، إسبانيا الطول 1.76 م (5 قدم 9 1⁄2 بوصة) مركز اللعب وسط مهاجم الجنسية إسبانيا  معلومات النادي النادي الحالي فياريال الرقم ...

 

 

Chanoch NissanyNissany memakai sebuah topi Minardi.Kebangsaan Israel Hungaria(kewarganegaraan ganda)Lahir29 Juli 1963 (umur 60)Tel Aviv, IsraelTerkait denganRoy Nissany (anak)Ajang sebelumnyaInternational Formula 3000 (2004)World Series Lights (2003)FIA CEZHungarian championships (2002–11, 2013–14)Gelar juara2002–03, 2003–04, 2006–07, 2009FIA CEZHungarian championships Chanoch Nissany (bahasa Ibrani: חנוך ניסני‎, lahir 29 Juli 1963) merupakan seorang pengusah...

 

 

Championnats d'Europe de cyclisme sur piste juniors et espoirs 2020 Généralités Organisateur(s) Union européenne de cyclisme Éditions 20e Lieu(x) Fiorenzuola d'Arda Date 8 au 13 octobre 2020 Nations 23 Participants 321 Épreuves 22 (H) + 22 (F) Site(s) Velodromo Attilio Pavesi Navigation Championnats d'Europe 2019 Championnats d'Europe 2021 modifier Les 20e Championnats d'Europe de cyclisme sur piste juniors et espoirs ont lieu du 8 au 13 octobre 2020 au Velodromo Attilio Pavesi de ...

French light tank Renault FT FT with Girod turret at Royal Museum of the Armed Forces, BelgiumTypeLight tankPlace of originFranceService historyIn service1917–1949Used bySee OperatorsWars World War I Russian Civil War Estonian War of Independence Turkish War of Independence Polish-Soviet War Warlord Era Rif War São Paulo Revolt of 1924[1] Great Syrian Revolt Brazilian Revolution of 1930 Brazilian Constitutionalist War Chinese Civil War Spanish Civil War Winter W...

 

 

غرايم سونيس (بالإنجليزية: Graeme Souness)‏  معلومات شخصية الميلاد 6 مايو 1953 (العمر 71 سنة)إدنبرة الطول 5 قدم 11 بوصة (1.80 م)[1][1] مركز اللعب وسط الجنسية المملكة المتحدة  مسيرة الشباب سنوات فريق Tynecastle F.C. [الإنجليزية]‏ المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1970–1972...