Cosmological phase transition

A cosmological phase transition is an overall change in the state of matter across the whole universe. The success of the Big Bang model led researchers to conjecture possible cosmological phase transitions taking place in the very early universe, at a time when it was much hotter and denser than today.[1][2]

Any cosmological phase transition may have left signals which are observable today, even if it took place in the first moments after the Big Bang, when the universe was opaque to light.[3]

Character

The Standard model of particle physics, parameterized by values measured in laboratories, can be used to predict the nature of cosmic phase transitions.[4] A system in the ground state at a high temperature changes as the temperature drops due to expansion of the universe. A new ground state may become favorable and a transition between the states is a phase transition.[4]: 9 

Transition order

Phase transitions can be categorised by their order. Transitions which are first order proceed via bubble nucleation and release latent heat as the bubbles expand.

As the universe cooled after the hot Big Bang, such a phase transition would have released huge amounts of energy, both as heat and as the kinetic energy of growing bubbles. In a strongly first-order phase transition, the bubble walls may even grow at near the speed of light.[5] This, in turn, would lead to the production of a stochastic background of gravitational waves.[2][6] Experiments such as NANOGrav and LISA may be sensitive to this signal.[7][8]

Shown below are two snapshots from simulations of the evolution of a first-order cosmological phase transition.[9] Bubbles first nucleate, then expand and collide, eventually converting the universe from one phase to another.

Second order transitions are continuous rather than abrupt and are less likely to leave observable imprints cosmic structures.[4]

Within the standard model

The Standard Model of particle physics contains three fundamental forces, the electromagnetic force, the weak force and the strong force. Shortly after the Big Bang, the extremely high temperatures may have modified the character of these forces. While these three forces act differently today, it has been conjectured that they may have been unified in the high temperatures of the early universe.[10][11]

Strong force phase transition

Conjectured form of the phase diagram of QCD matter, with temperature on the vertical axis and quark chemical potential on the horizontal axis, both in mega-electron volts.[12]

The strong force binds together quarks into protons and neutrons, in a phenomenon known as color confinement. However, at sufficiently high temperatures, protons and neutrons disassociate into free quarks. The strong force phase transition marks the end of the quark epoch. Studies of this transition based on lattice QCD have demonstrated that it would have taken place at a temperature of approximately 155 MeV, and would have been a smooth crossover transition.[13] In the early universe the chemical potential of baryons is assumed to be near zero and the transition near 170MeV converts a quark-gluon plasma to a hadron gas.[4]: 25 

This conclusion assumes the simplest scenario at the time of the transition, and first- or second-order transitions are possible in the presence of a quark, baryon or neutrino chemical potential, or strong magnetic fields.[14][15][16]

Electroweak phase transition

The electroweak phase transition marks the moment when the Higgs mechanism first activated, ending the electroweak epoch.[17][18] Lattice studies of the electroweak model have found the transition to be a smooth crossover, taking place at 159.5 ± 1.5 GeV.[19]

The conclusion that the transition is a crossover assumes the minimal scenario, and is modified by the presence of additional fields or particles. Particle physics models which account for dark matter or which lead to successful baryogenesis may predict a strongly first-order electroweak phase transition.[20] The electroweak baryogenesis model may explain the baryon asymmetry in the universe, the observation that the amount of matter vastly exceeds the amount of matter.[4]

Beyond the Standard Model

If the three forces of the Standard Model are unified in a Grand Unified Theory, then there would have been a cosmological phase transition at even higher temperatures, corresponding to the moment when the forces first separated out.[10][11] Cosmological phase transitions may also have taken place in a dark or hidden sector, amongst particles and fields that are only very weakly coupled to visible matter. [21]

Observational consequences

Among the ways that cosmological phase transitions can have measurable consequences are the production of primordial gravitational waves and the prediction of the baryon asymmetry. Adequate confirmation has not yet been achieved.[4]

See also

References

  1. ^ Guth, Alan H.; Tye, S.H. H. (1980). "Phase Transitions and Magnetic Monopole Production in the Very Early Universe". Phys. Rev. Lett. 44 (10): 631–635. Bibcode:1980PhRvL..44..631G. doi:10.1103/PhysRevLett.44.631. OSTI 1447535.
  2. ^ a b Witten, Edward (1984-07-15). "Cosmic separation of phases". Physical Review D. 30 (2): 272–285. Bibcode:1981NuPhB.177..477W. doi:10.1103/PhysRevD.30.272. ISSN 0556-2821.
  3. ^ Kibble, T. W. B. (1980). "Some implications of a Cosmological Phase Transition". Phys. Rep. 67 (1): 183–199. Bibcode:1980PhR....67..183K. doi:10.1016/0370-1573(80)90091-5.
  4. ^ a b c d e f Mazumdar, Anupam; White, Graham (2019-06-25). "Review of cosmic phase transitions: their significance and experimental signatures". Reports on Progress in Physics. 82 (7): 076901. doi:10.1088/1361-6633/ab1f55. ISSN 0034-4885.
  5. ^ Moore, Guy D.; Prokopec, Tomislav (1995). "Bubble wall velocity in a first order electroweak phase transition". Phys. Rev. Lett. 75 (5): 777–780. arXiv:hep-ph/9503296. Bibcode:1995PhRvL..75..777M. doi:10.1103/PhysRevLett.75.777. PMID 10060116. S2CID 17239930.
  6. ^ Hogan, C. J. (1986). "Gravitational radiation from cosmological phase transitions". Mon. Not. R. Astron. Soc. 218 (4): 629–636. doi:10.1093/mnras/218.4.629. Retrieved 9 August 2023.
  7. ^ NANOGrav (2023). "The NANOGrav 15 yr Data Set: Search for Signals of New Physics". Astrophys. J. Lett. 951 (1): L11. arXiv:2306.16219. Bibcode:2023ApJ...951L..11A. doi:10.3847/2041-8213/acdc91.
  8. ^ LISA Cosmology Working Group (2016). "Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions". JCAP. 04 (4): 001. arXiv:1512.06239. Bibcode:2016JCAP...04..001C. doi:10.1088/1475-7516/2016/04/001. S2CID 53333014.
  9. ^ Weir, David (2018). "Gravitational waves from a first order electroweak phase transition: a brief review". Philos. Trans. R. Soc. Lond. A. 376 (2114): 20170126. arXiv:1705.01783. Bibcode:2018RSPTA.37670126W. doi:10.1098/rsta.2017.0126. PMC 5784032. PMID 29358351.
  10. ^ a b Georgi, H.; Glashow, S. L. (1974). "Unity of All Elementary Forces". Phys. Rev. Lett. 32: 438–441. doi:10.1103/PhysRevLett.32.438.
  11. ^ a b Weinberg, Steven (1974). "Gauge and Global Symmetries at High Temperature". Phys. Rev. D. 9 (12): 3357–3378. Bibcode:1974PhRvD...9.3357W. doi:10.1103/PhysRevD.9.3357.
  12. ^ Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schäfer, Thomas (2008). "Color superconductivity in dense quark matter". Reviews of Modern Physics. 80 (4): 1455–1515. arXiv:0709.4635. Bibcode:2008RvMP...80.1455A. doi:10.1103/RevModPhys.80.1455. S2CID 14117263.
  13. ^ Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S. D.; Szabo, K. K. (2006). "The order of the quantum chromodynamics transition predicted by the standard model of particle physics". Nature. 443 (7112): 675–678. arXiv:hep-lat/0611014. Bibcode:2006Natur.443..675A. doi:10.1038/nature05120. PMID 17035999. S2CID 261693972.
  14. ^ Boeckel, Tillman; Schettler, Simon; Schaffner-Bielich, Jurgen (2011). "The Cosmological QCD Phase Transition Revisited". Prog. Part. Nucl. Phys. 66 (2): 266–270. arXiv:1012.3342. Bibcode:2011PrPNP..66..266B. doi:10.1016/j.ppnp.2011.01.017. S2CID 118745752.
  15. ^ Schwarz, Dominik J.; Stuke, Maik (2009). "Lepton asymmetry and the cosmic QCD transition". JCAP. 2009 (11): 025. arXiv:0906.3434. Bibcode:2009JCAP...11..025S. doi:10.1088/1475-7516/2009/11/025. S2CID 250761613.
  16. ^ Cao, Gaoging (2023). "First-order QCD transition in a primordial magnetic field". Phys. Rev. D. 107 (1): 014021. arXiv:2210.09794. Bibcode:2023PhRvD.107a4021C. doi:10.1103/PhysRevD.107.014021. S2CID 252967896.
  17. ^ Guth, Alan H.; Weinberg, Eric J. (1980). "A cosmological lower bound on the Higgs boson mass". Physical Review Letters. 45 (14): 1131–1134. Bibcode:1980PhRvL..45.1131G. doi:10.1103/PhysRevLett.45.1131. OSTI 1445632.
  18. ^ Witten, Edward (1981). "Cosmological consequences of a light Higgs boson". Nuclear Physics B. 177 (3): 477–488. Bibcode:1981NuPhB.177..477W. doi:10.1016/0550-3213(81)90182-6.
  19. ^ d'Onofrio, Michela; Rummukainen, Kari (2016). "Standard model cross-over on the lattice". Physical Review D. 93 (2): 025003. arXiv:1508.07161. Bibcode:2016PhRvD..93b5003D. doi:10.1103/PhysRevD.93.025003. hdl:10138/159845. S2CID 119261776.
  20. ^ Cline, James; Kainulainen, Kimmo (2013). "Electroweak baryogenesis and dark matter from a singlet Higgs". Journal of Cosmology and Astroparticle Physics. 01 (1): 012. arXiv:1210.4196. Bibcode:2013JCAP...01..012C. doi:10.1088/1475-7516/2013/01/012. S2CID 250739526.
  21. ^ Schwaller, Pedro (2015). "Gravitational waves from a dark phase transition". Phys. Rev. Lett. 115 (18): 181101. arXiv:1504.07263. Bibcode:2015PhRvL.115r1101S. doi:10.1103/PhysRevLett.115.181101. PMID 26565451.