Convective available potential energy

A skew-T plot showing a morning sounding with a large hydrolapse followed by an afternoon sounding showing the cooling (red curve moving to the left) which occurred in the mid-levels resulting in an unstable atmosphere as surface parcels have now become negatively buoyant. The red line is temperature, the green line is the dew point, and the black line is the air parcel lifted.

In meteorology, convective available potential energy (commonly abbreviated as CAPE),[1] is a measure of the capacity of the atmosphere to support upward air movement that can lead to cloud formation and storms. Some atmospheric conditions, such as very warm, moist, air in an atmosphere that cools rapidly with height, can promote strong and sustained upward air movement, possibly stimulating the formation of cumulus clouds or cumulonimbus (thunderstorm clouds). In that situation the potential energy of the atmosphere to cause upward air movement is very high, so CAPE (a measure of potential energy) would be high and positive. By contrast, other conditions, such as a less warm air parcel or a parcel in an atmosphere with a temperature inversion (in which the temperature increases above a certain height) have much less capacity to support vigorous upward air movement, thus the potential energy level (CAPE) would be much lower, as would the probability of thunderstorms.

More technically, CAPE is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air (called an air parcel) if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric sounding, a necessary condition for the development of cumulus and cumulonimbus clouds with attendant severe weather hazards.

Mechanics

A Skew-T diagram with important features labeled

CAPE exists within the conditionally unstable layer of the troposphere, the free convective layer (FCL), where an ascending air parcel is warmer than the ambient air. CAPE is measured in joules per kilogram of air (J/kg). Any value greater than 0 J/kg indicates instability and an increasing possibility of thunderstorms and hail. Generic CAPE is calculated by integrating vertically the local buoyancy of a parcel from the level of free convection (LFC) to the equilibrium level (EL):

Where is the height of the level of free convection and is the height of the equilibrium level (neutral buoyancy), where is the virtual temperature of the specific parcel, where is the virtual temperature of the environment (note that temperatures must be in the Kelvin scale), and where is the acceleration due to gravity. This integral is the work done by the buoyant force minus the work done against gravity, hence it's the excess energy that can become kinetic energy.

CAPE for a given region is most often calculated from a thermodynamic or sounding diagram (e.g., a Skew-T log-P diagram) using air temperature and dew point data usually measured by a weather balloon.

CAPE is effectively positive buoyancy, expressed B+ or simply B; the opposite of convective inhibition (CIN), which is expressed as B-, and can be thought of as "negative CAPE". As with CIN, CAPE is usually expressed in J/kg but may also be expressed as m2/s2, as the values are equivalent. In fact, CAPE is sometimes referred to as positive buoyant energy (PBE). This type of CAPE is the maximum energy available to an ascending parcel and to moist convection. When a layer of CIN is present, the layer must be eroded by surface heating or mechanical lifting, so that convective boundary layer parcels may reach their level of free convection (LFC).

On a sounding diagram, CAPE is the positive area above the LFC, the area between the parcel's virtual temperature line and the environmental virtual temperature line where the ascending parcel is warmer than the environment. Neglecting the virtual temperature correction may result in substantial relative errors in the calculated value of CAPE for small CAPE values.[2] CAPE may also exist below the LFC, but if a layer of CIN (subsidence) is present, it is unavailable to deep, moist convection until CIN is exhausted. When there is mechanical lift to saturation, cloud base begins at the lifted condensation level (LCL); absent forcing, cloud base begins at the convective condensation level (CCL) where heating from below causes spontaneous buoyant lifting to the point of condensation when the convective temperature is reached. When CIN is absent or is overcome, saturated parcels at the LCL or CCL, which had been small cumulus clouds, will rise to the LFC, and then spontaneously rise until hitting the stable layer of the equilibrium level. The result is deep, moist convection (DMC), or simply, a thunderstorm.

When a parcel is unstable, it will continue to move vertically, in either direction, dependent on whether it receives upward or downward forcing, until it reaches a stable layer (though momentum, gravity, and other forcing may cause the parcel to continue). There are multiple types of CAPE, downdraft CAPE (DCAPE), estimates the potential strength of rain and evaporatively cooled downdrafts. Other types of CAPE may depend on the depth being considered. Other examples are surface based CAPE (SBCAPE), mixed layer or mean layer CAPE (MLCAPE), most unstable or maximum usable CAPE (MUCAPE), and normalized CAPE (NCAPE).[3]

Fluid elements displaced upwards or downwards in such an atmosphere expand or compress adiabatically in order to remain in pressure equilibrium with their surroundings, and in this manner become less or more dense.

If the adiabatic decrease or increase in density is less than the decrease or increase in the density of the ambient (not moved) medium, then the displaced fluid element will be subject to downwards or upwards pressure, which will function to restore it to its original position. Hence, there will be a counteracting force to the initial displacement. Such a condition is referred to as convective stability.

On the other hand, if adiabatic decrease or increase in density is greater than in the ambient fluid, the upwards or downwards displacement will be met with an additional force in the same direction exerted by the ambient fluid. In these circumstances, small deviations from the initial state will become amplified. This condition is referred to as convective instability.[4]

Convective instability is also termed static instability, because the instability does not depend on the existing motion of the air; this contrasts with dynamic instability where instability is dependent on the motion of air and its associated effects such as dynamic lifting.

Significance to thunderstorms

Thunderstorms form when air parcels are lifted vertically. Deep, moist convection requires a parcel to be lifted to the LFC where it then rises spontaneously until reaching a layer of non-positive buoyancy. The atmosphere is warm at the surface and lower levels of the troposphere where there is mixing (the planetary boundary layer (PBL)), but becomes substantially cooler with height. The temperature profile of the atmosphere, the change in temperature, the degree that it cools with height, is the lapse rate. When the rising air parcel cools more slowly than the surrounding atmosphere, it remains warmer and less dense. The parcel continues to rise freely (convectively; without mechanical lift) through the atmosphere until it reaches an area of air less dense (warmer) than itself.

The amount, and shape, of the positive-buoyancy area modulates the speed of updrafts, thus extreme CAPE can result in explosive thunderstorm development; such rapid development usually occurs when CAPE stored by a capping inversion is released when the "lid" is broken by heating or mechanical lift. The amount of CAPE also modulates how low-level vorticity is entrained and then stretched in the updraft, with importance to tornadogenesis. The most important CAPE for tornadoes is within the lowest 1 to 3 km (0.6 to 1.9 mi) of the atmosphere, whilst deep layer CAPE and the width of CAPE at mid-levels is important for supercells. Tornado outbreaks tend to occur within high CAPE environments. Large CAPE is required for the production of very large hail, owing to updraft strength, although a rotating updraft may be stronger with less CAPE. Large CAPE also promotes lightning activity.[5]

Two notable days for severe weather exhibited CAPE values over 5 kJ/kg. Two hours before the 1999 Oklahoma tornado outbreak occurred on May 3, 1999, the CAPE value sounding at Oklahoma City was at 5.89 kJ/kg. A few hours later, an F5 tornado ripped through the southern suburbs of the city. Also on May 4, 2007, CAPE values of 5.5 kJ/kg were reached and an EF5 tornado tore through Greensburg, Kansas. On these days, it was apparent that conditions were ripe for tornadoes and CAPE wasn't a crucial factor. However, extreme CAPE, by modulating the updraft (and downdraft), can allow for exceptional events, such as the deadly F5 tornadoes that hit Plainfield, Illinois on August 28, 1990, and Jarrell, Texas on May 27, 1997, on days which weren't readily apparent as conducive to large tornadoes. CAPE was estimated to exceed 8 kJ/kg in the environment of the Plainfield storm and was around 7 kJ/kg for the Jarrell storm.

Severe weather and tornadoes can develop in an area of low CAPE values. The surprise severe weather event that occurred in Illinois and Indiana on April 20, 2004, is a good example. Importantly in that case, was that although overall CAPE was weak, there was strong CAPE in the lowest levels of the troposphere which enabled an outbreak of minisupercells producing large, long-track, intense tornadoes.[6]

Example from meteorology

A good example of convective instability can be found in our own atmosphere. If dry mid-level air is drawn over very warm, moist air in the lower troposphere, a hydrolapse (an area of rapidly decreasing dew point temperatures with height) results in the region where the moist boundary layer and mid-level air meet. As daytime heating increases mixing within the moist boundary layer, some of the moist air will begin to interact with the dry mid-level air above it. Owing to thermodynamic processes, as the dry mid-level air is slowly saturated its temperature begins to drop, increasing the adiabatic lapse rate. Under certain conditions, the lapse rate can increase significantly in a short amount of time, resulting in convection. High convective instability can lead to severe thunderstorms and tornadoes as moist air which is trapped in the boundary layer eventually becomes highly negatively buoyant relative to the adiabatic lapse rate and escapes as a rapidly rising bubble of humid air triggering the development of a cumulus or cumulonimbus cloud.

Limitations

As with most parameters used in meteorology, there are some caveats to keep in mind, one of which is what CAPE represents physically and in what instances CAPE can be used. One example where the more common method for determining CAPE might start to break down is in the presence of tropical cyclones (TCs), such as tropical depressions, tropical storms, or hurricanes.[7][8]

The more common method of determining CAPE can break down near tropical cyclones because CAPE assumes that liquid water is lost instantaneously during condensation. This process is thus irreversible upon adiabatic descent. This process is not realistic for tropical cyclones. To make the process more realistic for tropical cyclones is to use Reversible CAPE (RCAPE for short). RCAPE assumes the opposite extreme to the standard convention of CAPE and is that no liquid water will be lost during the process. This new process gives parcels a greater density related to water loading.

RCAPE is calculated using the same formula as CAPE, the difference in the formula being in the virtual temperature. In this new formulation, we replace the parcel saturation mixing ratio (which leads to the condensation and vanishing of liquid water) with the parcel water content. This slight change can drastically change the values we get through the integration.

RCAPE does have some limitations, one of which is that RCAPE assumes no evaporation keeping consistent for the use within a TC but should be used sparingly elsewhere.

Another limitation of both CAPE and RCAPE is that currently, both systems do not consider entrainment.

See also

References

  1. ^ M. W. Moncrieff, M.J. Miller (1976). "The dynamics and simulation of tropical cumulonimbus and squall lines". Q. J. R. Meteorol. Soc. 120 (432): 373–94. Bibcode:1976QJRMS.102..373M. doi:10.1002/qj.49710243208.
  2. ^ Charles A. Doswell III, E.N. Rasmussen (December 1994). "The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations". Weather and Forecasting. 9 (4): 625–9. Bibcode:1994WtFor...9..625D. doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.
  3. ^ Thompson, Rich (2006). "Explanation of SPC Severe Weather Parameters". Storm Prediction Center. Retrieved 2007-05-30.
  4. ^ Shu, Frank (1992). The Physics of Astrophysics, volume II: Gas dynamics. University Science Books. Bibcode:1992pavi.book.....S. ISBN 978-0-935702-65-1.
  5. ^ Craven, Jeffrey P.; H.E. Brooks (December 2004). "Baseline climatology of sounding derived parameters associated with deep moist convection" (PDF). National Weather Digest. 28: 13–24.
  6. ^ Pietrycha, Albert E.; J.M. Davies; M. Ratzer; P. Merzlock (October 2004). "Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana". Preprints of the 22nd Conference on Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society.
  7. ^ Edwards, Roger; Thompson, Richard (November 2014). Reversible CAPE in Tropical Cyclone Tornado Regimes. 27th AMS Severe Local Storms Conference. Madison, WI: American Meteorological Society. doi:10.13140/2.1.2530.5921.
  8. ^ Roger Edwards (July 7, 2017). Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE (YouTube Video). NOAA. Retrieved December 27, 2021.

Further reading

  • Barry, R.G. and Chorley, R.J. Atmosphere, weather and climate (7th ed) Routledge 1998 p. 80-81 ISBN 0-415-16020-0

Read other articles:

Berikut adalah Daftar perguruan tinggi swasta di Jambi, yang pembinaannya berada di bawah Kementerian Pendidikan dan Kebudayaan Republik Indonesia dan Perguruan Tinggi Swasta Keagamaan, yang pembinaannya berada di bawah Kementerian Agama. Daftar ini tidak termasuk Perguruan Tinggi Kedinasan yang pembinaannya berada dibawah masing-masing kementerian/lembaga. Universitas Batanghari Universitas Universitas Merangin Universitas Nurdin Hamzah Universitas Dinamika Bangsa (kampus Kota Baru) Universi...

 

 

1936 United States Senate election in Colorado ← 1930 November 3, 1936 1942 →   Nominee Ed Johnson Ray Sauter Party Democratic Republican Popular vote 299,376 166,308 Percentage 63.45% 35.25% Results by county Johnson:      50–60%      60–70%      70–80%Sauter:      50–60% U.S. senator before election Edward P. Costigan Democratic Elected U.S. Senator Ed...

 

 

Pour les articles homonymes, voir Le Temps et Temps (homonymie). Un exemplaire du quotidien Le Temps, le 9 décembre 2005. Pays Suisse Langue Français Périodicité Quotidienne Format Berlinois Genre Généraliste Prix au numéro 4,50 CHF Diffusion en kiosque ou par abonnement 35 000[1] ex. (2022) Date de fondation 18 mars 1998 Ville d’édition Genève Propriétaire Fondation Aventinus (depuis 2021)Ringier Axel Springer (2016-2019) Directeur de publication Tibère Adler Rédactrice e...

Third Sultan of Bengal and ruler of the Ilyas Shahi dynasty Ghiyasuddin Azam ShahSultanTomb of Ghiyasuddin Azam Shah in Sonargaon, Bangladesh3rd Sultan of BengalReign1390–1411PredecessorSikandar ShahSuccessorSaifuddin Hamza ShahDiedc. November 1411Sonargaon, Bengal SultanateBurialSonargaon, Dhaka, BangladeshDynastyIlyas Shahi dynastyReligionIslam Ghiyasuddin A'zam Shah (Bengali: গিয়াসউদ্দীন আজম শাহ, Persian: غیاث‌الدین اعظم شاه) was the...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

English actress (1897–1987) Hermione GingoldGingold in 1973, by Allan WarrenBornHermione Ferdinanda Gingold(1897-12-09)9 December 1897Maida Vale, London, EnglandDied24 May 1987(1987-05-24) (aged 89)New York City, U.S.Resting placeForest Lawn Memorial Park Glendale, California, U.S.OccupationActressYears active1909–1984Spouses Michael Joseph ​ ​(m. 1918; div. 1926)​ Eric Maschwitz ​ ​(m. 1926; div.&#...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Reinhard BonnkeReinhard BonnkeLahir19 April 1940 (umur 84)Königsberg, Prusia Timur, JermanMeninggal7 Desember 2019(2019-12-07) (umur 79)PekerjaanEvangelis, Pendiri Christ for All NationsSitus webChrist For All Nations Reinhard Willi Gottfri...

 

 

Autonomous region of Italy Valle d'Aosta and Vallée d'Aoste redirect here. For the wine region, see Valle d'Aosta DOC. Autonomous region of ItalyAosta Valley Valle d'Aosta (Italian)Vallée d'Aoste (French)Val d'Aoûta (Arpitan)Autonomous region and province FlagCoat of armsAnthem: Montagnes ValdôtainesCoordinates: 45°45′N 7°26′E / 45.750°N 7.433°E / 45.750; 7.433Country ItalyCapitalAostaGovernment • PresidentRenzo Testolin (UV)...

 

 

Need for Speedposter perilisan film di IndonesiaSutradaraScott WaughProduserJohn GatinsPatrick O'BrienMark SourianShane BlackDitulis olehGeorge GatinsJohn GatinsBerdasarkanNeed for Speedoleh Electronic ArtsPemeranAaron PaulDominic CooperScott MescudiPenata musikNathan FurstSinematograferShane HurlbutPenyuntingPaul RubellScott WaughPerusahaanproduksiTouchstone PicturesDreamWorks PicturesReliance EntertainmentElectronic ArtsDistributorWalt Disney StudiosMotion PicturesTanggal rilis 12 Mar...

Disambiguazione – Se stai cercando la specialità del Regio Esercito, vedi Cacciatori d'Africa. Divisione fanteria Cacciatori d'AfricaStemma della Divisione Cacciatori d'Africa Descrizione generaleAttiva27 luglio 1940 - 15 maggio 1941 Nazione Italia Servizio Regio esercito Tipodivisione di fanteria ComandoAddis Abeba (1940-1941)Dessiè (1941) Battaglie/guerreSeconda guerra mondialeCampagna dell'Africa Orientale Italiana Parte diRiserva Generale[1] (Comando FF.AA. A.O.I.) Repar...

 

 

I diritti LGBT in Liberia non esistono. Sia l'attività sessuale dello stesso sesso maschile che quella femminile sono illegali all'interno del paese. Indice 1 Legge sull'attività sessuale tra persone dello stesso sesso 2 Condizioni sociali 3 Legislazione del 2012 4 Tabella riassuntiva 5 Note 6 Voci correlate Legge sull'attività sessuale tra persone dello stesso sesso Il sottocapitolo D (relativo ai reati sessuali) del capitolo 14 della legge penale della Liberia criminalizza la sodomia vol...

 

 

В Википедии есть статьи о других людях с такой фамилией, см. Ярцева. Виктория Николаевна Ярцева Дата рождения 21 октября (3 ноября) 1906 Место рождения Санкт-Петербург, Российская империя[1] Дата смерти 27 сентября 1999(1999-09-27) (92 года) Место смерти Москва, Россия Страна ...

مؤتمر الأمم المتحدة للتغير المناخي 2010معلومات عامةتاريخ البداية 29 نوفمبر 2010[1] تاريخ الانتهاء 10 ديسمبر 2010[1] المكان كانكون البلد المكسيك الجهة المنظمة الأمم المتحدة موقع الويب unfccc.int… (الإنجليزية) تعديل - تعديل مصدري - تعديل ويكي بيانات انعقد مؤتمر الأمم المتحدة لتغي...

 

 

Indonesian free-to-air television network This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (April 2024) You can help expand this article with text translated from the corresponding article in Indonesian. (October 2022) Click [show] for important translation instru...

 

 

哈薩克斯坦國家鐵路公司類型合股公司成立1997年代表人物Askar Mamin(主席)總部哈薩克斯坦阿斯塔納業務範圍哈薩克斯坦产业交通營業額110億哈薩克斯坦堅戈(2009年)息税前利润▲ 1.458兆哈薩克斯坦堅戈(2012年) 净利润▲1.133兆哈薩克斯坦堅戈(2012年) 員工人數155,134(2012年)母公司Samruk-Kazyna网站www.railways.kz 哈薩克國家鐵路(簡稱KTZ,哈薩克語:Qazaqstan Temir Joly (QTJ)),�...

Gerakan Pemberontakan NordikPendiriKlas Lund (SWE)Haakon Forwald (NOR)Esa Henrik Holappa (FIN)PemimpinSimon Lindberg (SWE)Haakon Forwald (NOR)Antti Niemi (FIN)Jacob Villum Andersen (DEN)Pendirian1997 (Swedia)1998 (Norwegia)2006 atau 2007 (Finlandia)2016 (Islandia)2017 (Denmark)Motif Menggulingkan pemerintahan negara-negara Nordik Melakukan pembersihan ras dan perang ras melawan non-kulit putih Mendirikan negara orang kulit putih Nordik yang berdasarkan pada Nazisme IdeologiNeo-Nazisme[1&#...

 

 

クリスティアン・モルゲンシュテルンChristian Morgenstern Friedrich Dürckによる肖像画誕生日 1805年9月29日出生地 ローマ=ドイツ帝国 自由ハンザ都市ハンブルク死没年 1867年2月16日死没地 バイエルン王国、ミュンヘンテンプレートを表示 クリスティアン・モルゲンシュテルン(Christian Ernst Bernhard Morgenstern、1805年9月29日 - 1867年2月16日)はドイツの風景画家である。 略歴 ハンブ...

 

 

Жан-Ив Даниель-Лесюрфр. Jean-Yves Daniel-Lesur Основная информация Дата рождения 19 ноября 1908(1908-11-19) Место рождения Париж Дата смерти 2 июля 2002(2002-07-02) (93 года) Место смерти Париж Похоронен кладбище Пасси Страна  Франция Профессии композитор, органист Инструменты орга�...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2023) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحس...

 

 

Questa voce sull'argomento vescovi italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Filiberto Milliet de Favergesarcivescovo della Chiesa cattolicaIncarichi ricoperti Vescovo di San Giovanni di Moriana (1591-1618) Arcivescovo metropolita di Torino (1618-1625)  Nato5 aprile 1561 a Chambéry Nominato vescovo4 aprile 1590 da papa Sisto V Elevato arcivescovo17 dicembre 1618 da papa Paolo V Dec...