Condensed mathematics

Condensed mathematics is a theory developed by Dustin Clausen and Peter Scholze which, according to some,[who?] aims to unify various mathematical subfields, including topology, complex geometry, and algebraic geometry.[citation needed]

Idea

The fundamental idea in the development of the theory is given by replacing topological spaces by condensed sets, defined below. The category of condensed sets, as well as related categories such as that of condensed abelian groups, are much better behaved than the category of topological spaces. In particular, unlike the category of topological abelian groups, the category of condensed abelian groups is an abelian category, which allows for the use of tools from homological algebra in the study of those structures.

The framework of condensed mathematics turns out to be general enough that, by considering various "spaces" with sheaves valued in condensed algebras, one is able to incorporate algebraic geometry, p-adic analytic geometry and complex analytic geometry.[1]

Liquid vector space

In condensed mathematics, liquid vector spaces are alternatives to topological vector spaces.[2][3]

Definition

A condensed set is a sheaf of sets on the site of profinite sets, with the Grothendieck topology given by finite, jointly surjective collections of maps. Similarly, a condensed group, condensed ring, etc. is defined as a sheaf of groups, rings etc. on this site.

To any topological space one can associate a condensed set, customarily denoted , which to any profinite set associates the set of continuous maps . If is a topological group or ring, then is a condensed group or ring.

History

In 2013, Bhargav Bhatt and Peter Scholze introduced a general notion of pro-étale site associated to an arbitrary scheme. In 2018, together with Dustin Clausen, they arrived at the conclusion that already the pro-étale site of a single point, which is isomorphic to the site of profinite sets introduced above, has rich enough structure to realize large classes of topological spaces as sheaves on it. Further developments have led to a theory of condensed sets and solid abelian groups, through which one is able to incorporate non-Archimedean geometry into the theory.[4]

In 2020 Scholze completed a proof of a result which would enable the incorporation of functional analysis as well as complex geometry into the condensed mathematics framework, using the notion of liquid vector spaces. The argument has turned out to be quite subtle, and to get rid of any doubts about the validity of the result, he asked other mathematicians to provide a formalized and verified proof.[5][6] Over a 6-month period, a group led by Johan Commelin verified the central part of the proof using the proof assistant Lean.[7][6] As of 14 July 2022, the proof has been completed.[8]

Coincidentally, in 2019 Barwick and Haine introduced a very similar theory of pyknotic objects. This theory is very closely related to that of condensed sets, with the main differences being set-theoretic in nature: pyknotic theory depends on a choice of Grothendieck universes, whereas condensed mathematics can be developed strictly within ZFC.[9]

See also

References

  1. ^ Clausen, Dustin; Scholze, Peter (2022). "Condensed Mathematics and Complex Geometry" (PDF).
  2. ^ "liquid vector space in nLab". ncatlab.org. Retrieved 2023-11-07.
  3. ^ Scholze, Peter. "Lectures on Analytic Geometry: Lecture III: Condensed ℝ-vector spaces" (PDF). Retrieved 7 November 2023.
  4. ^ Scholze, Peter (2019). "Lectures on Condensed Mathematics" (PDF).
  5. ^ Scholze, Peter (2020-12-05). "Liquid tensor experiment". Xena. Retrieved 2022-06-28.
  6. ^ a b Hartnett, Kevin (July 28, 2021). "Proof Assistant Makes Jump to Big-League Math". Quanta Magazine.
  7. ^ Scholze, Peter (2021-06-05). "Half a year of the Liquid Tensor Experiment: Amazing developments". Xena. Retrieved 2022-06-28.
  8. ^ "leanprover-community/lean-liquid". Github. Retrieved 2022-07-14.
  9. ^ "Pyknotic sets". nLab.

Further reading

Read other articles:

1914 battle of the Zaian War 32°51′27″N 05°37′21″W / 32.85750°N 5.62250°W / 32.85750; -5.62250 Battle of El HerriPart of the Zaian WarLocation of the battle shown on a 1953 map.Date13 November 1914LocationEl Herri, near Khénifra, MoroccoResult Zaian victoryBelligerents  France Zaian ConfederationCommanders and leaders René Laverdure † Mouha ou Hammou ZayaniStrength 43 officers and 1,187 men[1] Estimated by the French at 5,000 tribe...

 

 

Норвежская кухня Культура культура Норвегии Государство  Норвегия  Медиафайлы на Викискладе Открытые бутерброды смёрбрёд Норвежская кухня (норв. norsk mat) — национальная кухня Норвегии. Основные компоненты норвежской кухни — рыба, мясо и молочные продукт...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Debingi adalah tarian tradisional asal daerah Liwa, Belalau, Krui dan Lampung Utara. Tarian tersebut tergolong tarian berkelompok. kagolong tari pasrawungan. Para penarinya terdiri dari para laki-laki yang sudah dewasa atau masih muda, selain juga dapa...

Cancelled award ceremony for film and television from 2007 65th Golden Globe AwardsDateJanuary 13, 2008SiteBeverly Hilton HotelBeverly Hills, Los Angeles, CaliforniaHighlightsBest Film: DramaAtonementBest Film: Musical or ComedySweeney Todd: The Demon Barber of Fleet StreetBest Drama SeriesMad MenBest Musical or Comedy SeriesExtrasBest Miniseries or Television movieLongfordMost awards(2) AtonementNo Country for Old MenSweeney Todd: The Demon Barber of Fleet StreetThe Diving Bell and the Butte...

 

 

Town in Oregon, United StatesLakeview, OregonTownWelcome sign at the north end of townNickname: The Tallest Town in OregonLocation in Lake County and OregonCoordinates: 42°11′30″N 120°21′10″W / 42.19167°N 120.35278°W / 42.19167; -120.35278CountryUnited StatesStateOregonCountyLakeIncorporated1889Government • MayorRay TurnerArea[1] • Total2.45 sq mi (6.35 km2) • Land2.44 sq mi (6.33...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2021) لويزا أدورنو (بالإيطالية: Luisa Adorno)‏    معلومات شخصية اسم الولادة (بالإيطالية: Mila Curradi)‏  الميلاد 2 أغسطس 1921  بيزا  الوفاة 12 يوليو 2021 (99 سنة) [1] ...

Cintré L'église paroissiale Saint-Melaine. Logo Administration Pays France Région Bretagne Département Ille-et-Vilaine Arrondissement Rennes Intercommunalité Rennes Métropole Maire Mandat Jacques Ruello (DVD) 2020-2026 Code postal 35310 Code commune 35080 Démographie Gentilé Cintréen Populationmunicipale 2 533 hab. (2021 ) Densité 304 hab./km2 Population agglomération 395 710 hab. Géographie Coordonnées 48° 06′ 20″ nord, 1° 52�...

 

 

Основная статья: КишинёвСм. также: Хронология истории Кишинёва ‎ История Кишинёва — столицы Республики Молдова. Стр. 48 из адрес-календаря «Вся Россия», 1902 Стр. 49-51 из адрес-календаря «Вся Россия», 1902 Содержание 1 Молдавское княжество (1436—1812) 2 Бессарабская губерния (1812—...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Eksplorasi minyak bumi – berita · surat kabar · buku · cendekiawan · JSTOR Gambar pori batuanAbu-abu adalah pasir Biru adalah air Hitam adalah minyak Eksplorasi atau pencarian minyak Bumi merupakan suatu...

Artikel ini membahas jabatan keagamaan. Untuk penggunaan dalam Islam, lihat Imam (Islam). Pastor Gereja Katolik Roma dalam pakaian tradisional jabatannya. Imam adalah orang yang diberikan wewenang untuk menyelenggarakan upacara keagamaan. Jabatan atau kedudukan mereka disebut imamat, istilah yang juga dapat digunakan secara kolektif. Sejak dahulu dan dalam masyarakat-masyarakat yang paling sederhana pun telah hadir pemimpin upacara keagamaan yang disebut imam (lihat shaman dan orakel). Dalam ...

 

 

City in Texas, United StatesSocorro, TexasCityMotto: City with a MissionLocation of Socorro, TexasCoordinates: 31°39′33.64″N 106°18′12.55″W / 31.6593444°N 106.3034861°W / 31.6593444; -106.3034861CountryUnited StatesStateTexasCountyEl PasoFounded1680Incorporated1985 (first incorporated 1871)Government • TypeCouncil-Manager • MayorIvy Avalos [1][2] • City ManagerAdriana Rodarte [2]Area[3 ...

 

 

Fictional character in Sailor Moon The native form of this personal name is Aino Minako. This article uses Western name order when mentioning individuals. Fictional character Sailor VenusPretty Soldier Sailor Moon and Codename: Sailor V characterMinako in her Super Sailor Venus form as seen in Season 4 of the original anime.First appearanceCodename: Sailor V chapter #1: Sailor V is Born! (1991)Created byNaoko TakeuchiVoiced byJapanese: Rika Fukami Shizuka Itō (Sailor Moon Crystal) Englis...

Overview of the languages spoken in Honduras This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Languages of Honduras – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this message) Languages of HondurasOfficialSpanishIndigenousAmerindian languagesMinorityGarifunaForeignEnglish There ar...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2017年8月)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 密西西比州 美國联邦州State of Mississippi 州旗州徽綽號:木蘭之州地图中高亮部分为密西西比州坐标:30°13'N�...

 

 

2001 FIFA Club World ChampionshipCampeonato Mundial de Clubes de la FIFA España 20012001 FIFA Club World Championship official logoTournament detailsHost countrySpainDates28 July – 12 August (cancelled)Teams12 (from 6 confederations)← 2000 2005 → International football competition The 2001 FIFA Club World Championship was a football tournament arranged by FIFA to take place in Spain from 28 July to 12 August 2001.[1] It was supposed to be the second edition of the...

British TV comedy series (1990–1998) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Harry Enfield & Chums – news · newspapers · books · scholar · JSTOR (August 2020) (Learn how and when to remove this message) Harry Enfield & ChumsAlso known asHarry Enfield's Television ProgrammeHarry Enfield Pres...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Gaseous fossil fuel Not to be confused with gasoline, biogas, or liquefied petroleum gas. For the Canadian band, see Natural Gas (band). Natural gas burning on a gas stove Burning of natural gas coming out of the ground Natural gas (also called fossil gas, methane gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane (97%)[1] in addition to various smaller amounts of other higher alkanes. Traces of carbon dioxide, nitrogen, hydroge...

Lynching of Jim McIlherronLocationEstill Springs, Tennessee, U.S.DateFebruary 12, 1918Attack typeLynching Part of a series on theNadir of Americanrace relationsViolence in the 1906 Atlanta race massacre Historical background Reconstruction era Voter suppression Disfranchisement Redeemers Compromise of 1877 Jim Crow laws Segregation Anti-miscegenation laws Convict leasing Practices Common actions Expulsions of African Americans Lynchings Lynching postcards Sundown town Whitecapping Vigilante g...

 

 

Bank Bumi ArtaJenisPublikKode emitenIDX: BNBAIndustriJasa keuanganPendahuluBank Duta NusantaraDidirikan1967Kantorpusat Jakarta, IndonesiaTokohkunciRachmat Mulia Suryahusada (Presiden Komisaris)PemilikAjaib Group (24%)Situs webwww.bankbba.co.id Bank Bumi Arta (IDX: BNBA) adalah perusahaan Indonesia yang berbentuk perseroan terbatas dan bergerak di bidang jasa keuangan perbankan. Bank ini berbasis di Jakarta dan didirikan pada tahun 1967. Bank Bumi Arta melakukan merger dengan Bank Duta Nusanta...