Chow's lemma

Chow's lemma, named after Wei-Liang Chow, is one of the foundational results in algebraic geometry. It roughly says that a proper morphism is fairly close to being a projective morphism. More precisely, a version of it states the following:[1]

If is a scheme that is proper over a noetherian base , then there exists a projective -scheme and a surjective -morphism that induces an isomorphism for some dense open

Proof

The proof here is a standard one.[2]

Reduction to the case of irreducible

We can first reduce to the case where is irreducible. To start, is noetherian since it is of finite type over a noetherian base. Therefore it has finitely many irreducible components , and we claim that for each there is an irreducible proper -scheme so that has set-theoretic image and is an isomorphism on the open dense subset of . To see this, define to be the scheme-theoretic image of the open immersion

Since is set-theoretically noetherian for each , the map is quasi-compact and we may compute this scheme-theoretic image affine-locally on , immediately proving the two claims. If we can produce for each a projective -scheme as in the statement of the theorem, then we can take to be the disjoint union and to be the composition : this map is projective, and an isomorphism over a dense open set of , while is a projective -scheme since it is a finite union of projective -schemes. Since each is proper over , we've completed the reduction to the case irreducible.

can be covered by finitely many quasi-projective -schemes

Next, we will show that can be covered by a finite number of open subsets so that each is quasi-projective over . To do this, we may by quasi-compactness first cover by finitely many affine opens , and then cover the preimage of each in by finitely many affine opens each with a closed immersion in to since is of finite type and therefore quasi-compact. Composing this map with the open immersions and , we see that each is a closed subscheme of an open subscheme of . As is noetherian, every closed subscheme of an open subscheme is also an open subscheme of a closed subscheme, and therefore each is quasi-projective over .

Construction of and

Now suppose is a finite open cover of by quasi-projective -schemes, with an open immersion in to a projective -scheme. Set , which is nonempty as is irreducible. The restrictions of the to define a morphism

so that , where is the canonical injection and is the projection. Letting denote the canonical open immersion, we define , which we claim is an immersion. To see this, note that this morphism can be factored as the graph morphism (which is a closed immersion as is separated) followed by the open immersion ; as is noetherian, we can apply the same logic as before to see that we can swap the order of the open and closed immersions.

Now let be the scheme-theoretic image of , and factor as

where is an open immersion and is a closed immersion. Let and be the canonical projections. Set

We will show that and satisfy the conclusion of the theorem.

Verification of the claimed properties of and

To show is surjective, we first note that it is proper and therefore closed. As its image contains the dense open set , we see that must be surjective. It is also straightforward to see that induces an isomorphism on : we may just combine the facts that and is an isomorphism on to its image, as factors as the composition of a closed immersion followed by an open immersion . It remains to show that is projective over .

We will do this by showing that is an immersion. We define the following four families of open subschemes:

As the cover , the cover , and we wish to show that the also cover . We will do this by showing that for all . It suffices to show that is equal to as a map of topological spaces. Replacing by its reduction, which has the same underlying topological space, we have that the two morphisms are both extensions of the underlying map of topological space , so by the reduced-to-separated lemma they must be equal as is topologically dense in . Therefore for all and the claim is proven.

The upshot is that the cover , and we can check that is an immersion by checking that is an immersion for all . For this, consider the morphism

Since is separated, the graph morphism is a closed immersion and the graph is a closed subscheme of ; if we show that factors through this graph (where we consider via our observation that is an isomorphism over from earlier), then the map from must also factor through this graph by construction of the scheme-theoretic image. Since the restriction of to is an isomorphism onto , the restriction of to will be an immersion into , and our claim will be proven. Let be the canonical injection ; we have to show that there is a morphism so that . By the definition of the fiber product, it suffices to prove that , or by identifying and , that . But and , so the desired conclusion follows from the definition of and is an immersion. Since is proper, any -morphism out of is closed, and thus is a closed immersion, so is projective.

Additional statements

In the statement of Chow's lemma, if is reduced, irreducible, or integral, we can assume that the same holds for . If both and are irreducible, then is a birational morphism.[3]

References

Bibliography

  • Grothendieck, Alexandre; Dieudonné, Jean (1961). "Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes". Publications Mathématiques de l'IHÉS. 8. doi:10.1007/bf02699291. MR 0217084.
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157

Read other articles:

Bola voli pada Pekan Olahraga Nasional 2021, LokasiGOR Bolavoli, Koya Koso, Kota Jayapura, Papua (Indoor)GOR Voli Pasir Koya Koso, Kota Jayapura, Papua (Pantai/Pasir)Tanggal30 September-12 Oktober 2021 (Indoor)Pantai 1-11 Oktober 2021 (Pantai/Pasir)← 20162024 → Bola voli pada Pekan Olahraga Nasional 2021 akan digelar dari 30 September sampai 12 Oktober 2021 di GOR Bolavoli, Koya Koso, Kota Jayapura, Papua. Pertandingan kali ini menampilkan 4 nomor, masing masing untuk pu...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pioneer 10 – berita · surat kabar · buku · cendekiawan · JSTORPioneer 10 pada fase akhir pembangunannya. Pioneer 10 adalah sebuah wahana antariksa pertama yang melampaui sabuk asteroid, dan juga yang per...

 

Elements of some cosmological models Not to be confused with Celestial sphere. Heavenly spheres redirects here. For the album by the Studio de musique ancienne de Montréal, see Heavenly Spheres. Geocentric celestial spheres; Peter Apian's Cosmographia (Antwerp, 1539) The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the f...

This article is part of a series aboutGeorge Washington Early life Family Military career Electoral history American Revolution Virginia Association Commander in Chiefof the Continental Army Valley Forge Battle of Trenton Mount Vernon Conference 1787 Constitutional Convention 1st President of the United States Presidency (Timeline) First term 1788–89 election 1st inauguration Judiciary Act Whiskey Rebellion Thanksgiving Presidential title Coinage Act Residence Act District of Columbia Seco...

 

باراليون أستروس (باليونانية: Παράλιον Άστρος)‏    تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 37°25′00″N 22°45′58″E / 37.416666666667°N 22.766111111111°E / 37.416666666667; 22.766111111111   الارتفاع 10 متر[2]  السكان التعداد السكاني 1059 (resident population of Greece) (2021)  معلوما...

 

American architect, systems theorist, author, designer, inventor, and futurist For other uses, see Buckminster Fuller (disambiguation). Buckminster FullerFuller in 1972BornRichard Buckminster Fuller(1895-07-12)July 12, 1895Milton, Massachusetts, U.S.DiedJuly 1, 1983(1983-07-01) (aged 87)Los Angeles, California, U.S.Occupations Designer author inventor Spouse Anne Hewlett ​(m. 1917)​Children2, including Allegra Fuller SnyderAwardsPresidential Medal of Freedom ...

Election in Maine Main article: 2008 United States presidential election 2008 United States presidential election in Maine ← 2004 November 4, 2008 2012 →   Nominee Barack Obama John McCain Party Democratic Republican Home state Illinois Arizona Running mate Joe Biden Sarah Palin Electoral vote 4 0 Popular vote 421,923 295,273 Percentage 57.71% 40.38% County Results Congressional District Results Municipality Results Obama   40-50%  ...

 

La clarté nucale, petite zone anéchogène (ne renvoyant pas d'écho en échographie) située sur le crâne d'un fœtus humain pendant le premier trimestre de grossesse, permet de dépister certaines anomalies congénitales, en particulier la trisomie 21. Définition Fœtus avec clarté nucale normale. La clarté nucale, comme son nom l’indique, se situe au niveau de la nuque du fœtus. Elle est due à un petit décollement entre la peau et le rachis et correspond à une zone dite anéchog...

 

Міністерство оборони України (Міноборони) Емблема Міністерства оборони та Прапор Міністерства оборони Будівля Міністерства оборони у КиєвіЗагальна інформаціяКраїна  УкраїнаДата створення 24 серпня 1991Попередні відомства Міністерство оборони СРСР Народний комісарі...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Historic urban park in Manila, Philippines This article is about the park located in Manila. For the park located in Seattle with the same name, see Dr. Jose Rizal Park. For the park located in Wilhelmsfeld, Germany with the same name, see Wilhelmsfeld. Rizal Park, LunetaLiwasang Rizal, LunetaThe Rizal Monument in Rizal ParkTypeUrban parkLocationErmita, ManilaCoordinates14°34′57″N 120°58′42″E / 14.58250°N 120.97833°E / 14.58250; 120.97833Area58 hectares (14...

 

Voce principale: Serie D 2022-2023. Questa voce raccoglie un approfondimento sui gironi D, E ed F dell'edizione 2022-2023 della Serie D. Indice 1 Girone D 1.1 Squadre partecipanti 1.2 Classifica finale 1.3 Risultati 1.3.1 Tabellone 1.3.2 Calendario 1.4 Spareggi 1.4.1 Play-off 1.4.1.1 Semifinali 1.4.1.2 Finale 1.4.2 Play-out 2 Girone E 2.1 Squadre partecipanti 2.2 Classifica finale 2.3 Risultati 2.3.1 Tabellone 2.3.2 Calendario 2.4 Spareggi 2.4.1 Play-off 2.4.1.1 Semifinali 2.4.1.2 Finale 2.4...

Private university in New Orleans, Louisiana, US This article is about the Historically Black University in New Orleans. For the Jesuit University in Ohio, see Xavier University. For other schools with similar names, see Xavier University (disambiguation). Xavier University of LouisianaMottoDeo Adjuvante Non TimendumMotto in EnglishWith God's help there is nothing to fearTypePrivate historically black universityEstablished1925 (1925)FounderSt. Katharine DrexelReligious affiliationCa...

 

Acuérdate de míPoster rilis teatrikalSutradaraSebastián GarcíaProduserSebastián GarcíaDitulis olehSebastián GarcíaPemeranAlec ChaparroLiz NavarroPenata musikFabricio MoriSinematograferCassiel Pachacutek GarcíaPenyuntingEros AlvaradoDistributorStar Films[1]Tanggal rilis Oktober 2022 (2022-10) (FECIT) 14 Februari 2024 (2024-02-14) (Peru) NegaraPeruBahasaSpanyol Acuérdate de mí (terj. har. 'Remember me') adalah film komedi romantis Peru tahun ...

 

Former electoral alliance in Spain Catalunya Sí que es Pot SpokespersonLluís RabellFounded15 July 2015Dissolved2017Merger ofPodemICVEUiAEquoPreceded byICV–EUiASucceeded byEn Comú PodemCatalunya en Comú–PodemIdeologyLeft-wing populismEnvironmentalismSocial justiceCatalan right of self-determinationPolitical positionLeft-wingWebsitecatalunyasiqueespot.catPolitics of CataloniaPolitical partiesElections Catalunya Sí que es Pot (English: Catalonia Yes We Can, also tran...

Kiss×sisSampul depan volume pertama mangaキス×シス(Kisu×shisu) MangaPengarangBow DitamaPenerbitKodanshaImprintKC DeluxeMajalahBessatsu Young Magazine (January 2004 – September 2008)Weekly Young Magazine (September 2008 – Desember 2009)Monthly Young Magazine (Desember 2009 – September 2021)DemografiSeinenTerbit11 Desember 2005 – 21 September 2021Volume25 (Daftar volume) Video animasi orisinalSutradaraMunenori NawaProduserTomoko KawasakiSkenarioKatsumi HasegawaMusikMizuki UekiStu...

 

English design advocate (1808–1882) Woodburytype of Henry Cole by Lock & Whitfield. Sir Henry Cole FRSA (15 July 1808 – 15 April 1882) was a British civil servant and inventor who facilitated many innovations in commerce and education in the 19th century in the United Kingdom. Cole is credited with devising the concept of sending greetings cards at Christmas time, introducing the world's first commercial Christmas card in 1843.[1] Biography Henry Cole was born in Bath the son ...

 

Rossendale and DarwenGéographiePays  Royaume-UniNation constitutive AngleterreRégion Angleterre du Nord-OuestSuperficie 217,51 km2Coordonnées 53° 42′ 29″ N, 2° 14′ 24″ ODémographiePopulation 101 000 hab. (2021)Densité 464,3 hab./km2 (2021)FonctionnementStatut Circonscription du Parlement du Royaume-Uni (d)HistoireFondation 9 juin 1983modifier - modifier le code - modifier Wikidata La circonscription de Rossendale and Darwen est un...

Tomer Sisley, Elsa Zylberstein, Valérie Donzelli et Patrick Timsit lors de l'ouverture du printemps du cinéma 2013, à Paris. Félix Moati, Virginie Ledoyen, Max Boublil, Camille Chamoux, Aure Atika, Fred Testot et Emmanuelle Bercot lors de l'ouverture de l'édition 2015. Le Printemps du cinéma est une opération se déroulant chaque année en France depuis 2000, organisée au début du printemps par la Fédération nationale des cinémas français (FNCF), et qui consiste, trois jours dura...

 

Indian computer scientist Venkata PadmanabhanAlma materIIT DelhiUniversity of California, BerkeleyKnown forResearch in networked and mobile systemsAwards2016 Shanti Swarup Bhatnagar PrizeScientific careerFieldsNetworkingMobile computingInstitutionsMicrosoftMicrosoft IndiaDoctoral advisorRandy KatzDomenico Ferrari Venkata Narayana Padmanabhan is a computer scientist and principal researcher at Microsoft Research India.[1] He is known for his research in networked and mob...