Chipaque Formation
The Chipaque Formation (Spanish : Formación Chipaque , K2 cp, Kc) is a geological formation of the Altiplano Cundiboyacense , Eastern Ranges of the Colombian Andes . The formation is also described as Gachetá Formation , named after Gachetá , in the area of the Llanos foothills of the Eastern Ranges. The predominantly organic shale formation dates to the Late Cretaceous period; Cenomanian -Turonian epochs and has a maximum thickness of 1,700 metres (5,600 ft). The formation, rich in TOC, is an important oil and gas generating unit for the giant oilfields Cupiagua and Cusiana of the Eastern Ranges as well as in the Llanos Orientales .
Etymology
The formation was named in 1931 as group and as formation in 1957 by Hubach after Chipaque , Cundinamarca .[ 1]
Description
Lithologies
The Chipaque Formation with a maximum thickness of 1,700 metres (5,600 ft), is characterised by a sequence of pyritic organic shales , limestones and siltstones , with sandstone banks intercalated in the formation.[ 2] The Chipaque Formation contains a high density of fauna.[ 1] The formation is rich in TOC and one of the principal source rocks for oil and gas generation in the foothills of the Eastern Ranges,[ 3] sourcing fields as Cusiana , Cupiagua and many others.[ 4] Chipaque also sourced the oilfields of the Llanos Orientales .[ 5] In the Chitasugá-1 well, drilled between 1980 and 1981, from the sandstones of the Chipaque Formation half a million m3 of water were produced.[ 6] The sandstone beds are reservoir rocks for oil in the Eastern Ranges.[ 3]
Stratigraphy and depositional environment
The Chipaque Formation overlies the Une Formation and is overlain by the Guadalupe Group . The core of the Zipaquirá Anticline consists of the Chipaque Formation.[ 7] The age has been estimated to be Cenomanian -Turonian .[ 1] Stratigraphically, the formation is time equivalent with the Simijaca Formation .[ 8] The formation has been deposited in an open to shallow marine platform setting.[ 9] The deposition is represented by a maximum flooding surface and anoxic conditions.[ 10]
Outcrops
Type locality of the Chipaque Formation to the south of the Bogotá savanna
The Chipaque Formation is apart from its type locality , found in the Eastern Hills of Bogotá , the Ocetá Páramo and many other locations in the Eastern Ranges. The anticlinals of the Río Blanco-Machetá , San José and Sopó -Sesquilé are composed of the Chipaque Formation.[ 1]
Regional correlations
Stratigraphy of the Llanos Basin and surrounding provinces
Ma
Age
Paleomap
Regional events
Catatumbo
Cordillera
proximal Llanos
distal Llanos
Putumayo
VSM
Environments
Maximum thickness
Petroleum geology
Notes
0.01
Holocene
Holocene volcanismSeismic activity
alluvium
Overburden
1
Pleistocene
Pleistocene volcanismAndean orogeny 3Glaciations
Guayabo
Soatá Sabana
Necesidad
Guayabo
Gigante
Alluvial to fluvial (Guayabo)
550 m (1,800 ft) (Guayabo)
[ 11] [ 12] [ 13] [ 14]
2.6
Pliocene
Pliocene volcanism Andean orogeny 3GABI
Subachoque
5.3
Messinian
Andean orogeny 3Foreland
Marichuela
Caimán
Honda
[ 13] [ 15]
13.5
Langhian
Regional flooding
León
hiatus
Caja
León
Lacustrine (León)
400 m (1,300 ft) (León)
Seal
[ 14] [ 16]
16.2
Burdigalian
Miocene inundationsAndean orogeny 2
C1
Carbonera C1
Ospina
Proximal fluvio-deltaic (C1)
850 m (2,790 ft) (Carbonera)
Reservoir
[ 15] [ 14]
17.3
C2
Carbonera C2
Distal lacustrine-deltaic (C2)
Seal
19
C3
Carbonera C3
Proximal fluvio-deltaic (C3)
Reservoir
21
Early Miocene
Pebas wetlands
C4
Carbonera C4
Barzalosa
Distal fluvio-deltaic (C4)
Seal
23
Late Oligocene
Andean orogeny 1Foredeep
C5
Carbonera C5
Orito
Proximal fluvio-deltaic (C5)
Reservoir
[ 12] [ 15]
25
C6
Carbonera C6
Distal fluvio-lacustrine (C6)
Seal
28
Early Oligocene
C7
C7
Pepino
Gualanday
Proximal deltaic-marine (C7)
Reservoir
[ 12] [ 15] [ 17]
32
Oligo-Eocene
C8
Usme
C8
onlap
Marine-deltaic (C8)
Seal Source
[ 17]
35
Late Eocene
Mirador
Mirador
Coastal (Mirador)
240 m (790 ft) (Mirador)
Reservoir
[ 14] [ 18]
40
Middle Eocene
Regadera
hiatus
45
50
Early Eocene
Socha
Los Cuervos
Deltaic (Los Cuervos)
260 m (850 ft) (Los Cuervos)
Seal Source
[ 14] [ 18]
55
Late Paleocene
PETM 2000 ppm CO2
Los Cuervos
Bogotá
Gualanday
60
Early Paleocene
SALMA
Barco
Guaduas
Barco
Rumiyaco
Fluvial (Barco)
225 m (738 ft) (Barco)
Reservoir
[ 11] [ 12] [ 15] [ 14] [ 19]
65
Maastrichtian
KT extinction
Catatumbo
Guadalupe
Monserrate
Deltaic-fluvial (Guadalupe)
750 m (2,460 ft) (Guadalupe)
Reservoir
[ 11] [ 14]
72
Campanian
End of rifting
Colón-Mito Juan
[ 14] [ 20]
83
Santonian
Villeta /Güagüaquí
86
Coniacian
89
Turonian
Cenomanian-Turonian anoxic event
La Luna
Chipaque
Gachetá
hiatus
Restricted marine (all)
500 m (1,600 ft) (Gachetá)
Source
[ 11] [ 14] [ 21]
93
Cenomanian
Rift 2
100
Albian
Une
Une
Caballos
Deltaic (Une)
500 m (1,600 ft) (Une)
Reservoir
[ 15] [ 21]
113
Aptian
Capacho
Fómeque
Motema
Yaví
Open marine (Fómeque)
800 m (2,600 ft) (Fómeque)
Source (Fóm)
[ 12] [ 14] [ 22]
125
Barremian
High biodiversity
Aguardiente
Paja
Shallow to open marine (Paja)
940 m (3,080 ft) (Paja)
Reservoir
[ 11]
129
Hauterivian
Rift 1
Tibú- Mercedes
Las Juntas
hiatus
Deltaic (Las Juntas)
910 m (2,990 ft) (Las Juntas)
Reservoir (LJun)
[ 11]
133
Valanginian
Río Negro
Cáqueza Macanal Rosablanca
Restricted marine (Macanal)
2,935 m (9,629 ft) (Macanal)
Source (Mac)
[ 12] [ 23]
140
Berriasian
Girón
145
Tithonian
Break-up of Pangea
Jordán
Arcabuco
Buenavista
Saldaña
Alluvial , fluvial (Buenavista)
110 m (360 ft) (Buenavista)
"Jurassic"
[ 15] [ 24]
150
Early-Mid Jurassic
Passive margin 2
La Quinta
Noreán
hiatus
Coastal tuff (La Quinta)
100 m (330 ft) (La Quinta)
[ 25]
201
Late Triassic
Mucuchachi
Payandé
[ 15]
235
Early Triassic
Pangea
hiatus
"Paleozoic"
250
Permian
300
Late Carboniferous
Famatinian orogeny
Cerro Neiva ()
[ 26]
340
Early Carboniferous
Fossil fish Romer's gap
Cuche (355-385)
Farallones ()
Deltaic , estuarine (Cuche)
900 m (3,000 ft) (Cuche)
360
Late Devonian
Passive margin 1
Río Cachirí (360-419)
Ambicá ()
Alluvial -fluvial -reef (Farallones)
2,400 m (7,900 ft) (Farallones)
[ 23] [ 27] [ 28] [ 29] [ 30]
390
Early Devonian
High biodiversity
Floresta (387-400)
Shallow marine (Floresta)
600 m (2,000 ft) (Floresta)
410
Late Silurian
Silurian mystery
425
Early Silurian
hiatus
440
Late Ordovician
Rich fauna in Bolivia
San Pedro (450-490)
Duda ()
470
Early Ordovician
First fossils
Busbanzá (>470±22 )
Guape ()
Río Nevado ()
[ 31] [ 32] [ 33]
488
Late Cambrian
Regional intrusions
Chicamocha (490-515)
Quetame ()
Ariarí ()
SJ del Guaviare (490-590)
San Isidro ()
[ 34] [ 35]
515
Early Cambrian
Cambrian explosion
[ 33] [ 36]
542
Ediacaran
Break-up of Rodinia
pre-Quetame
post-Parguaza
El Barro ()
Yellow: allochthonous basement (Chibcha Terrane ) Green: autochthonous basement (Río Negro-Juruena Province )
Basement
[ 37] [ 38]
600
Neoproterozoic
Cariri Velhos orogeny
Bucaramanga (600-1400)
pre-Guaviare
[ 34]
800
Snowball Earth
[ 39]
1000
Mesoproterozoic
Sunsás orogeny
Ariarí (1000)
La Urraca (1030-1100)
[ 40] [ 41] [ 42] [ 43]
1300
Rondônia-Juruá orogeny
pre-Ariarí
Parguaza (1300-1400)
Garzón (1180-1550)
[ 44]
1400
pre-Bucaramanga
[ 45]
1600
Paleoproterozoic
Maimachi (1500-1700)
pre-Garzón
[ 46]
1800
Tapajós orogeny
Mitú (1800)
[ 44] [ 46]
1950
Transamazonic orogeny
pre-Mitú
[ 44]
2200
Columbia
2530
Archean
Carajas-Imataca orogeny
[ 44]
3100
Kenorland
Sources
Legend
group
important formation
fossiliferous formation
minor formation
(age in Ma)
proximal Llanos (Medina)[ note 1]
distal Llanos (Saltarin 1A well)[ note 2]
Gallery
Oyster fossils from a sandstone bank of the Chipaque Formation
Organic shale of the Chipaque Formation
Chipaque Formation
Ocetá Páramo
Chipaque Formation Ocetá Páramo
Banded shale of the Chipaque Formation Ocetá Páramo
See also
Notes and references
Notes
^ based on Duarte et al. (2019)[ 47] , García González et al. (2009),[ 48] and geological report of Villavicencio[ 49]
^ based on Duarte et al. (2019)[ 47] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[ 50]
References
^ a b c d Montoya Arenas & Reyes Torres, 2005, p.26
^ Lobo Guerrero, 1992, p.4
^ a b García González et al., 2009, p.49
^ Cortés et al., 2009, p.4
^ García González et al., 2009, p.58
^ Lobo Guerrero, 1993, p.20
^ García & Jiménez, 2016, p.24
^ Montoya Arenas & Reyes Torres, 2005, p.22
^ García González et al., 2009, p.209
^ Villamil, 2012, p.164
^ a b c d e f García González et al., 2009, p.27
^ a b c d e f García González et al., 2009, p.50
^ a b García González et al., 2009, p.85
^ a b c d e f g h i j Barrero et al., 2007, p.60
^ a b c d e f g h Barrero et al., 2007, p.58
^ Plancha 111, 2001, p.29
^ a b Plancha 177, 2015, p.39
^ a b Plancha 111, 2001, p.26
^ Plancha 111, 2001, p.24
^ Plancha 111, 2001, p.23
^ a b Pulido & Gómez, 2001, p.32
^ Pulido & Gómez, 2001, p.30
^ a b Pulido & Gómez, 2001, pp.21-26
^ Pulido & Gómez, 2001, p.28
^ Correa Martínez et al., 2019, p.49
^ Plancha 303, 2002, p.27
^ Terraza et al., 2008, p.22
^ Plancha 229, 2015, pp.46-55
^ Plancha 303, 2002, p.26
^ Moreno Sánchez et al., 2009, p.53
^ Mantilla Figueroa et al., 2015, p.43
^ Manosalva Sánchez et al., 2017, p.84
^ a b Plancha 303, 2002, p.24
^ a b Mantilla Figueroa et al., 2015, p.42
^ Arango Mejía et al., 2012, p.25
^ Plancha 350, 2011, p.49
^ Pulido & Gómez, 2001, pp.17-21
^ Plancha 111, 2001, p.13
^ Plancha 303, 2002, p.23
^ Plancha 348, 2015, p.38
^ Planchas 367-414, 2003, p.35
^ Toro Toro et al., 2014, p.22
^ Plancha 303, 2002, p.21
^ a b c d Bonilla et al., 2016, p.19
^ Gómez Tapias et al., 2015, p.209
^ a b Bonilla et al., 2016, p.22
^ a b Duarte et al., 2019
^ García González et al., 2009
^ Pulido & Gómez, 2001
^ García González et al., 2009, p.60
Bibliography
García, Helbert; Jiménez, Giovanny (2016), "Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia)", Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia , 39 (39): 21–32, doi :10.15446/rbct.n39.50333
Schütz, Christian (2012), Combined structural and Petroleum Systems Modeling in the Eastern Cordillera Basin, Colombia (MSc. thesis) , Rheinisch-Westfälische Technische Hochschule Aachen & Instituto Colombiano del Petróleo , pp. 1–161
Villamil, Tomas (2012), Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia , Society for Sedimentary Geology (SEPM), pp. 161–216
Cortés, Martín; García, Diego; Bayona, Germán; Blanco, Yolima (2009), Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge , Asociación Colombiana de Geólogos y Geofisicos del Petróleo (ACGGP), pp. 1–8
García González, Mario; Mier Umaña, Ricardo; Cruz Guevara, Luis Enrique; Vásquez, Mauricio (2009), Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas , Universidad Industrial de Santander , pp. 1–219
Montoya Arenas, Diana María; Reyes Torres, Germán Alfonso (2005), Geología de la Sabana de Bogotá , INGEOMINAS , pp. 1–104
Guerrero Uscátegui, Alberto Lobo (1993), Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia , pp. 1–29
Guerrero Uscátegui, Alberto Lobo (1992), Geología e Hidrogeología de Santafé de Bogotá y su Sabana , Sociedad Colombiana de Ingenieros, pp. 1–20
Reports
Reyes, Germán; Montoya, Diana; Terraza, Roberto; Fuquen, Jaime; Mayorga, Marcela; Gaona, Tatiana; Etayo, Fernando (2008), Geología del cinturón esmeraldífero oriental Planchas 210, 228, 229 , INGEOMINAS , pp. 1−126
Acosta Garay, Jorge; Ulloa Melo, Carlos E. (2001), Geología de la Plancha 227 - La Mesa - 1:100,000 , INGEOMINAS , pp. 1–80
Terraza, Roberto; Montoya, Diana; Reyes, Germán; Moreno, Giovanni; Fúquen, Jaime; Torres Jaimes, Eliana; López Cardona, Myriam; Nivia Guevara, Álvaro; Etayo Serna, Fernando (2013), Geología de la Plancha 229 - Gachalá - 1:100,000 (PDF) , Servicio Geológico Colombiano , pp. 1–296, retrieved 2018-06-01
Patiño, Alejandro; Fuquen, Jaime; Ramos, Julián; Pedraza, Andrea; Ceballos, Leonardo; Pinzón, Lyda; Jerónimo, Yadira; Álvarez, Leidy; Torres, Andrea (2011), Cartografía geológica de la Plancha 247 - Cáqueza - 1:100,000 (PDF) , INGEOMINAS , pp. 1–100, archived from the original (PDF) on 2017-08-15, retrieved 2017-08-04 Archived 2017-08-15 at the Wayback Machine
Maps
Ulloa, Carlos E.; Guerra, Álvaro; Escovar, Ricardo (1998), Plancha 172 - Paz de Río - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Ulloa, Carlos E.; Rodríguez, Erasmo; Escovar, Ricardo (1998), Plancha 192 - Laguna de Tota - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Renzoni, Giancarlo (1992), Plancha 193 - Yopal - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Montoya, Diana María; Reyes, Germán (2009), Plancha 209 - Zipaquirá - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Terraza, Roberto; Moreno, Giovanni; Buitrago, José A.; Pérez, Adrián; Montoya, Diana María (2010), Plancha 210 - Guateque - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Ulloa, Carlos; Rodríguez, Erasmo (2009), Plancha 211 - Tauramena - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Buitrago, José Alberto; Terraza M., Roberto; Etayo, Fernando (1998), Plancha 228 - Santafé de Bogotá Noreste - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Ulloa, Carlos E; Escovar, Ricardo; Pacheco, Adolfo H. (2009), Plancha 230 - Monterrey - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Acosta, Jorge E.; Ulloa, Carlos E. (1998), Plancha 246 - Fusagasugá - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Acosta, Jorge; Calcedo, Juan Carlos; Ulloa, Carlos (1999), Plancha 265 - Icononzo - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Pulido, Orlando; Gómez, Luz Stella; Marín, Pedro (1998), Plancha 266 - Villavicencio - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Acosta, Jorge; Caro, Pablo; Fuquen, Jaime; Osorno, José (2002), Plancha 303 - Colombia - 1:100,000 , INGEOMINAS , p. 1
Velandia, Francisco; Cepeda, Héctor (2005), Planchas 171 & 191 - Geología sector del sur del municipio de Paipa (Boyacá) - 1:25,000 , INGEOMINAS
Various, Authors (1997), Mapa geológico de Santa Fe de Bogotá – Geological Map Bogotá – 1:50,000 (PDF) , INGEOMINAS , p. 1, retrieved 2017-03-16
External links