Ceva's theorem

Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC
Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC

In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,

In other words, the length XY is taken to be positive or negative according to whether X is to the left or right of Y in some fixed orientation of the line. For example, AF / FB is defined as having positive value when F is between A and B and negative otherwise.

Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field.

A slightly adapted converse is also true: If points D, E, F are chosen on BC, AC, AB respectively so that

then AD, BE, CF are concurrent, or all three parallel. The converse is often included as part of the theorem.

The theorem is often attributed to Giovanni Ceva, who published it in his 1678 work De lineis rectis. But it was proven much earlier by Yusuf Al-Mu'taman ibn Hűd, an eleventh-century king of Zaragoza.[1]

Associated with the figures are several terms derived from Ceva's name: cevian (the lines AD, BE, CF are the cevians of O), cevian triangle (the triangle DEF is the cevian triangle of O); cevian nest, anticevian triangle, Ceva conjugate. (Ceva is pronounced Chay'va; cevian is pronounced chev'ian.)

The theorem is very similar to Menelaus' theorem in that their equations differ only in sign. By re-writing each in terms of cross-ratios, the two theorems may be seen as projective duals.[2]

Proofs

Several proofs of the theorem have been created.[3][4] Two proofs are given in the following.

The first one is very elementary, using only basic properties of triangle areas.[3] However, several cases have to be considered, depending on the position of the point O.

The second proof uses barycentric coordinates and vectors, but is somehow[vague] more natural and not case dependent. Moreover, it works in any affine plane over any field.

Using triangle areas

First, the sign of the left-hand side is positive since either all three of the ratios are positive, the case where O is inside the triangle (upper diagram), or one is positive and the other two are negative, the case O is outside the triangle (lower diagram shows one case).

To check the magnitude, note that the area of a triangle of a given height is proportional to its base. So

Therefore,

(Replace the minus with a plus if A and O are on opposite sides of BC.) Similarly,

and

Multiplying these three equations gives

as required.

The theorem can also be proven easily using Menelaus's theorem.[5] From the transversal BOE of triangle ACF,

and from the transversal AOD of triangle BCF,

The theorem follows by dividing these two equations.

The converse follows as a corollary.[3] Let D, E, F be given on the lines BC, AC, AB so that the equation holds. Let AD, BE meet at O and let F' be the point where CO crosses AB. Then by the theorem, the equation also holds for D, E, F'. Comparing the two,

But at most one point can cut a segment in a given ratio so F = F’.

Using barycentric coordinates

Given three points A, B, C that are not collinear, and a point O, that belongs to the same plane, the barycentric coordinates of O with respect of A, B, C are the unique three numbers such that

and

for every point X (for the definition of this arrow notation and further details, see Affine space).

For Ceva's theorem, the point O is supposed to not belong to any line passing through two vertices of the triangle. This implies that

If one takes for X the intersection F of the lines AB and OC (see figures), the last equation may be rearranged into

The left-hand side of this equation is a vector that has the same direction as the line CF, and the right-hand side has the same direction as the line AB. These lines have different directions since A, B, C are not collinear. It follows that the two members of the equation equal the zero vector, and

It follows that

where the left-hand-side fraction is the signed ratio of the lengths of the collinear line segments AF and FB.

The same reasoning shows

Ceva's theorem results immediately by taking the product of the three last equations.

Generalizations

The theorem can be generalized to higher-dimensional simplexes using barycentric coordinates. Define a cevian of an n-simplex as a ray from each vertex to a point on the opposite (n – 1)-face (facet). Then the cevians are concurrent if and only if a mass distribution can be assigned to the vertices such that each cevian intersects the opposite facet at its center of mass. Moreover, the intersection point of the cevians is the center of mass of the simplex.[6][7]

Another generalization to higher-dimensional simplexes extends the conclusion of Ceva's theorem that the product of certain ratios is 1. Starting from a point in a simplex, a point is defined inductively on each k-face. This point is the foot of a cevian that goes from the vertex opposite the k-face, in a (k + 1)-face that contains it, through the point already defined on this (k + 1)-face. Each of these points divides the face on which it lies into lobes. Given a cycle of pairs of lobes, the product of the ratios of the volumes of the lobes in each pair is 1.[8]

Routh's theorem gives the area of the triangle formed by three cevians in the case that they are not concurrent. Ceva's theorem can be obtained from it by setting the area equal to zero and solving.

The analogue of the theorem for general polygons in the plane has been known since the early nineteenth century.[9] The theorem has also been generalized to triangles on other surfaces of constant curvature.[10]

The theorem also has a well-known generalization to spherical and hyperbolic geometry, replacing the lengths in the ratios with their sines and hyperbolic sines, respectively.

See also

References

  1. ^ Holme, Audun (2010). Geometry: Our Cultural Heritage. Springer. p. 210. ISBN 978-3-642-14440-0.
  2. ^ Benitez, Julio (2007). "A Unified Proof of Ceva and Menelaus' Theorems Using Projective Geometry" (PDF). Journal for Geometry and Graphics. 11 (1): 39–44.
  3. ^ a b c Russell, John Wellesley (1905). "Ch. 1 §7 Ceva's Theorem". Pure Geometry. Clarendon Press.
  4. ^ Alfred S. Posamentier and Charles T. Salkind (1996), Challenging Problems in Geometry, pages 177–180, Dover Publishing Co., second revised edition.
  5. ^ Follows Hopkins, George Irving (1902). "Art. 986". Inductive Plane Geometry. D.C. Heath & Co.
  6. ^ Landy, Steven (December 1988). "A Generalization of Ceva's Theorem to Higher Dimensions". The American Mathematical Monthly. 95 (10): 936–939. doi:10.2307/2322390. JSTOR 2322390.
  7. ^ Wernicke, Paul (November 1927). "The Theorems of Ceva and Menelaus and Their Extension". The American Mathematical Monthly. 34 (9): 468–472. doi:10.2307/2300222. JSTOR 2300222.
  8. ^ Samet, Dov (May 2021). "An Extension of Ceva's Theorem to n-Simplices". The American Mathematical Monthly. 128 (5): 435–445. doi:10.1080/00029890.2021.1896292. S2CID 233413469.
  9. ^ Grünbaum, Branko; Shephard, G. C. (1995). "Ceva, Menelaus and the Area Principle". Mathematics Magazine. 68 (4): 254–268. doi:10.2307/2690569. JSTOR 2690569.
  10. ^ Masal'tsev, L. A. (1994). "Incidence theorems in spaces of constant curvature". Journal of Mathematical Sciences. 72 (4): 3201–3206. doi:10.1007/BF01249519. S2CID 123870381.

Further reading

Read other articles:

Koordinat: 5°08′15″S 119°32′53″E / 5.1376003°S 119.5481758°E / -5.1376003; 119.5481758 Bonto BungaDesaKantor Desa Bonto Bunga di Dusun ManjallingNegara IndonesiaProvinsiSulawesi SelatanKabupatenMarosKecamatanMoncongloeKode pos90564[1]Kode Kemendagri73.09.13.2004 Luas10,02 km² tahun 2017Jumlah penduduk1.355 jiwa tahun 2017Kepadatan135,23 jiwa/km² tahun 2017Jumlah RT10Jumlah RW5 Bonto Bunga (Ejaan Van Ophuijsen: Bonto Boenga; Lontara Bugis &...

 

الدوري المنغولي لكرة القدم 2004 تفاصيل الموسم الدوري المنغولي لكرة القدم  البلد منغوليا  الدوري المنغولي لكرة القدم 2003  الدوري المنغولي لكرة القدم 2005  تعديل مصدري - تعديل   الدوري المنغولي لكرة القدم 2004 هو موسم من الدوري المنغولي لكرة القدم. فاز فيه Khangarid FC [ال�...

 

Cet article est une ébauche concernant le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article 69 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature IIIe législature de la Quatrième République française Gouvernement Charles de Gaulle (3e) Promulgation 4...

Square in Tehran, Iran Telegraph building Municipality Palace of Tehran in 1950s Municipality Palace of Tehran in 1930s to 1940s ToopKhāneh (Persian: توپخانه; which literally means Artillery Barracks),[1] also spelt as Tūpkhāneh, is a major town square (Maidan-e Toopkhaneh) and a neighborhood in the south of the central district of the city of Tehran, Iran. It was built in 1867 by an order of Amir Kabir and Commissioned in 1867. After the Iranian Revolution, it was renamed I...

 

2008 single by Brandy Right Here (Departed)Single by Brandyfrom the album Human ReleasedSeptember 9, 2008 (2008-09-09)Recorded2008Studio2nd Floor (Los Angeles, California)Length3:38LabelEpicSongwriter(s) Evan Kidd Bogart Victoria Horn Rodney Jerkins Erika Nuri David DQ Quiñones Producer(s) Rodney Jerkins LaShawn Daniels Brandy singles chronology Afrodisiac (2004) Right Here (Departed) (2008) Long Distance (2008) Right Here (Departed) is a song by American recording artist Bran...

 

Overview of nuclear power in Sweden BarsebäckForsmarkOskarshamnR4RinghalsÅgestaclass=notpageimage| Nuclear power plants in Sweden (view) Active plants Closed plants Unfinished plants The electricity sector in Sweden has three operational nuclear power plants with 6 operational nuclear reactors, which produce about 29.8% of the country's electricity.[1] The nation's largest power station, Forsmark Nuclear Power Plant, has three reactors producing 3.3 GW and 14% of Swed...

Anastasia PradithaLahirAnastasia Praditha Adelina30 November 1993 (umur 30)Tangerang, Banten, IndonesiaPekerjaanModelpembawa acara televisipenyiar beritaTahun aktif2012–sekarangGelarMiss Indonesia Banten 2012 Puteri Indonesia Banten 2019 Anastasia Praditha Adelina (lahir 30 November 1993) adalah seorang model, penyiar berita dan pembawa acara televisi Indonesia. Ia memulai kariernya dari modeling dengan memenangkan posisi 15 besar pada pemilihan Miss Indonesia tahun 2012 mewakili...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) كايل بيتش   معلومات شخصية الميلاد 13 يناير 1990 (34 سنة)  فانكوفر  مواطنة كندا  الوزن 203 رطل  الحياة العملية المهنة لاعب هوكي الجليد  الرياضة هوكي ال...

 

Lou Andreas-SaloméLou Andreas-Salomé pada 1914LahirDipersengketakan(1861-02-12)12 Februari 1861Saint Petersburg, Kekaisaran RusiaMeninggal5 Februari 1937(1937-02-05) (umur 75)Göttingen, JermanSebab meninggalGagal ginjalKebangsaanRusia Lou Andreas-Salomé (Louise von Salomé, Luíza Gustavovna Salomé, Lioulia von Salomé, bahasa Rusia: Луиза Густавовна Саломе; 12 Februari 1861 – 5 Februari 1937) adalah seorang penulis dan psikoanalis kela...

English footballer Deji Oshilaja Oshilaja playing for Cardiff City in 2013Personal informationFull name Abdul-Yussuf Adedeji Adeniyi Oshilaja[1]Date of birth (1993-03-02) 2 March 1993 (age 31)Place of birth Bermondsey, EnglandHeight 1.81 m (5 ft 11+1⁄2 in)Position(s) DefenderTeam informationCurrent team Burton AlbionNumber 4Youth career2009–2012 Cardiff CitySenior career*Years Team Apps (Gls)2012–2017 Cardiff City 0 (0)2013–2014 → Newport County (loan...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Кинематограф Туркменистана — киноискусство и киноиндустрия Туркменистане. Уполномоченным государственным органом в области кинематографии является Министерство культуры Туркменистана. Основной производящей кинокомпанией в Туркменистане является объединение «�...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

Chemical compound This article is about the synthetic cannabinoid drug. For the Japanese girl idol group, see AKB48. APINACALegal statusLegal status BR: Class F2 (Prohibited psychotropics)[1] CA: Schedule II DE: Anlage II (Authorized trade only, not prescriptible) NZ: Temporary Class UK: Class B US: Schedule I Also illegal in Czech Republic, Japan, Latvia, and Singapore Identifiers IUPAC name N-(1-Adamantyl)-1-pentylindazole-3-carboxamide CAS Number134597...

Zoo in Pennsylvania, U.S. Lehigh Valley ZooEntrance to the Lehigh Valley Zoo in June 201340°39′30″N 75°37′33″W / 40.658251°N 75.625956°W / 40.658251; -75.625956Date opened1974 [1]LocationSchnecksville, Pennsylvania, U.S.Land area29 acres (11.7 ha) [1]No. of animals275 [2]No. of species70 [2]Annual visitors100,000 + 30,000 students (2011) [1]MembershipsAZA[3]Websitewww.lvzoo.org The Lehigh Valley Zoo is a...

 

Myrna Close is a linear walk along the line of a former railway line in Colliers Wood in the London Borough of Merton. It is a 0.75 hectare Local Nature Reserve and a Site of Borough Importance for Nature Conservation, Grade II, which is owned and managed by Merton Council.[1][2][3] The vegetation is grassland, woodland and scrub. The main trees are elm, oak, and sycamore, and the reserve provides an important habitat for birds and butterflies. There is also a small s...

 

English politician (1646–1701) The Right HonourableThe Earl of BridgewaterKB PCFirst Lord of the AdmiraltyIn office1699–1701Preceded byThe Earl of OrfordSucceeded byThe Earl of PembrokeFirst Lord of TradeIn office16 December 1695 – 9 June 1699Preceded byVacant Last held byThe Earl of ShaftesburySucceeded byThe Earl of StamfordMember of Parliament for Buckinghamshire With Thomas WartonIn office1685–1686Preceded byRichard HampdenSucceeded byThomas Lee Personal detailsBorn9 Nove...

Canadian politician, journalist, and clergyman (1885–1962) William Irvine William Irvine (April 19, 1885 – October 26, 1962) was a Canadian politician, journalist, and clergyman. He served in the House of Commons of Canada on three occasions, as a representative of Labour, the United Farmers of Alberta, and the Co-operative Commonwealth Federation. During the 1920s, he was active in the Ginger Group of radical Members of Parliament (MPs). Early life Irvine was born at Gletness in Shetland...

 

American politician (1925–2014) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Donald J. Albosta – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message) Donald J. AlbostaMember of the U.S. House of Representativesfrom Michigan's 10th districtIn o...