Categorical logic

Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science.[1] In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.

Overview

There are three important themes in the categorical approach to logic:

Categorical semantics
Categorical logic introduces the notion of structure valued in a category C with the classical model theoretic notion of a structure appearing in the particular case where C is the category of sets and functions. This notion has proven useful when the set-theoretic notion of a model lacks generality and/or is inconvenient. R.A.G. Seely's modeling of various impredicative theories, such as System F, is an example of the usefulness of categorical semantics.
It was found that the connectives of pre-categorical logic were more clearly understood using the concept of adjoint functor, and that the quantifiers were also best understood using adjoint functors.[2]
Internal languages
This can be seen as a formalization and generalization of proof by diagram chasing. One defines a suitable internal language naming relevant constituents of a category, and then applies categorical semantics to turn assertions in a logic over the internal language into corresponding categorical statements. This has been most successful in the theory of toposes, where the internal language of a topos together with the semantics of intuitionistic higher-order logic in a topos enables one to reason about the objects and morphisms of a topos as if they were sets and functions.[3] This has been successful in dealing with toposes that have "sets" with properties incompatible with classical logic. A prime example is Dana Scott's model of untyped lambda calculus in terms of objects that retract onto their own function space. Another is the Moggi–Hyland model of system F by an internal full subcategory of the effective topos of Martin Hyland.
Term model constructions
In many cases, the categorical semantics of a logic provide a basis for establishing a correspondence between theories in the logic and instances of an appropriate kind of category. A classic example is the correspondence between theories of βη-equational logic over simply typed lambda calculus and Cartesian closed categories. Categories arising from theories via term model constructions can usually be characterized up to equivalence by a suitable universal property. This has enabled proofs of meta-theoretical properties of some logics by means of an appropriate categorical algebra. For instance, Freyd gave a proof of the disjunction and existence properties of intuitionistic logic this way.

These three themes are related. The categorical semantics of a logic consists in describing a category of structured categories that is related to the category of theories in that logic by an adjunction, where the two functors in the adjunction give the internal language of a structured category on the one hand, and the term model of a theory on the other.

See also

Notes

  1. ^ Goguen, Joseph; Mossakowski, Till; de Paiva, Valeria; Rabe, Florian; Schroder, Lutz (2007). "An Institutional View on Categorical Logic" (PDF). International Journal of Software and Informatics. 1 (1): 129–152. CiteSeerX 10.1.1.126.2361.
  2. ^ Lawvere 1971, Quantifiers and Sheaves
  3. ^ Aluffi 2009

References

Books

Seminal papers

Further reading

Read other articles:

Lumbricus terrestris Klasifikasi ilmiah Kerajaan: Animalia Filum: Annelida Kelas: Clitellata Subkelas: Oligochaeta Ordo: Haplotaxida Famili: Lumbricidae Genus: Lumbricus Spesies: L. terrestris Nama binomial Lumbricus terrestrisLinnaeus, 1758 Lumbricus terrestristol adalah cacing merah besar asli Eropa, namun sekarang sudah banyak tersebar di tempat lain di seluruh dunia (bersama dengan beberapa lumbricid ), karena diperkenalan manusia. Di beberapa daerah, orang menganggapnya sebagai sua...

 

15°09′00″N 76°56′00″E / 15.1500°N 76.9333°E / 15.1500; 76.9333 Bellary ಬಳ್ಳಾರಿ Bellary ಬಳ್ಳಾರಿ Negara Bagian Karnataka Kantor pusat Bellary Division Gulbarga Taluk Bellary, Hosapete, Kampli, Hoovina Hadagali, Kudligi, Sandur, Siruguppa, Hagari Bommana Halli Koordinat 15°09′00″N 76°56′00″E / 15.1500°N 76.9333°E / 15.1500; 76.9333 Luas - Ketinggian 8447 km² - 449 m ...

 

Iklan Indomie dalam bahasa Igbo di Negara Bagian Abia, Nigeria. Sajian Indomie rasa Onion Chicken Flavour (rasa ayam bawang) dari Nigeria Produk mi instan asal Indonesia Indomie sangat populer di Nigeria dimana produsennya, Dufil Prima Foods Plc. (yang sebagian sahamnya juga milik Indofood CBP Sukses Makmur), menguasai sekitar 54% pangsa pasar setempat.[1] Menurut Direktur Indofood, Franciscus Welirang, Indomie juga menjadi pionir mi instan yang pertama kali ada di Nigeria.[2]...

Diplostomida Schistosoma mansoni Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Platyhelminthes Kelas: Trematoda Subkelas: Digenea Ordo: DiplostomidaOlson, Cribb, Tkach, Bray & Littlewood, 2003 Famili Lihat teks Sinonim Strigeida (Poche, 1926.) Diplostomida adalah sebuah ordo trematoda dalam subkelas Digenea. Ordo Diplostomida mencakup 395 genus menurut Catalogue of Live.[1] Daftar Famili Subordo Diplostomata Superfamili Brachylaimoidea Joyeux & Foley, 1930 Br...

 

Voce principale: Associazione Calcio Riunite Messina. Associazione Calcio Riunite MessinaStagione 1951-1952Sport calcio Squadra Messina Allenatore Carlo Rigotti Presidente Giuseppe Melazzo Serie B3º posto. Maggiori presenzeCampionato: Vellutini (38) Miglior marcatoreCampionato: Colomban, Bertolin (7) StadioStadio Giovanni Celeste 1950-1951 1952-1953 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'Associazione Calcio Riunite Messina nelle competizioni...

 

Season of television series The BachelorSeason 26Promotional posterStarringClayton EchardPresented byJesse PalmerNo. of contestants30 (31 initially)WinnerSusie EvansRunners-upGabby WindeyRachel Recchia No. of episodes12ReleaseOriginal networkABCOriginal releaseJanuary 3 (2022-01-03) –March 15, 2022 (2022-03-15)Additional informationFilming datesSeptember 29 (2021-09-29) –November 21, 2021 (2021-11-21)Season chronology← PreviousSeason 25Next →Se...

Serbian dish of filo, cheese and eggs GibanicaA piece of gibanicaAlternative namesGužvara[1]TypePastryPlace of originformer YugoslaviaServing temperatureHot or coldMain ingredientsPhyllo dough, white cheese (feta, sirene), eggsOther informationOther ingredients include milk, kaymak and lard or sunflower oil and different types of fruit and nuts  Media: Gibanica Gibanica (Serbian Cyrillic: гибаница, pronounced [ˈɡibanit͡sa]) is a traditional pastry dish pop...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

2008 single by Avril Lavigne The Best Damn ThingSingle by Avril Lavignefrom the album The Best Damn Thing ReleasedJune 13, 2008 (2008-06-13)RecordedJanuary 2007Genre Pop punk Length3:10LabelRCASongwriter(s) Avril Lavigne Butch Walker Producer(s)Butch WalkerAvril Lavigne singles chronology Hot (2007) The Best Damn Thing (2008) Alice (2010) Music videoThe Best Damn Thing on YouTube The Best Damn Thing is a song by Canadian singer-songwriter Avril Lavigne, taken from her third stu...

Serbian basketball coach This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Veselin Matić – news · newspapers · books · scholar · JSTOR (May 2009) (Learn how and when to remove this message) The t...

 

Professional rugby union league in the U.S. This article is about the North American rugby competition. For the French second division competition, see Rugby Pro D2. PRO RugbySportRugby unionFounded2015First season2016Ceased2017CEODouglas SchoningerNo. of teams5CountryUnited StatesLastchampion(s)Denver Stampede (2016)TV partner(s)ONE World SportsTime Warner Cable Sports ChannelOfficial websitePRORugby.org The Professional Rugby Organization, known as PRO Rugby, was an American professional ru...

 

Homme moderne, homme, humain, être humain Pour les articles homonymes, voir Homo (homonymie), Sapiens, Homme et Humain. Homo sapiens Représentation d'humains adultes (homme et femme) sur la plaque de Pioneer.Classification Règne Animalia Embranchement Chordata Classe Mammalia Ordre Primates Sous-ordre Haplorrhini Infra-ordre Simiiformes Micro-ordre Catarrhini Super-famille Hominoidea Famille Hominidae Sous-famille Homininae Tribu Hominini Sous-tribu Hominina Genre Homo EspèceHomo sapiens...

Beaty Biodiversity MuseumDidirikan2010Lokasi2212 Main Mall, University of British Columbia, Vancouver, KanadaKoordinat49°15′49″N 123°15′05″W / 49.2636°N 123.2514°W / 49.2636; -123.2514JenisMuseum sejarah alamWisatawan42.367 (2017–18)[1]DirekturEric TaylorSitus webwww.beatymuseum.ubc.ca Beaty Biodiversity Museum adalah museum sejarah alam di Vancouver, British Columbia, Kanada, yang terletak di kampus Universitas British Columbia. Koleksinya menemp...

 

Минский областной суд. Дом правосудия в Минске. Уровень преступности по районам Республики Беларусь (преступлений на 100 000 человек; 2014 год). >1500 1000—1499 750—999 <750 Преступность в Республике Беларусь складывается из правонарушений, совершённых на территории респ�...

 

Hamilton DeanPekerjaanDramawan, Sutradara teaterKebangsaanIrlandia Hamilton Deane (1880 – 1958) adalah aktor, dramawan, dan sutradara asal Irlandia. Dia berperan dalam memopulerkan Dracula karya Bram Stoker dalam bentuk drama, dan di kemudian hari, film.[1] Kehidupan Poster drama Dracula pada 1938 Deane lahir di Clontarf, pinggiran Dublin. Keluarganya tinggal dekat dengan keluarga Bram Stoker dan Florence Balcombe (istri Bram Stoker), dan ibunya telah mengenal Bram Stoker sejak masi...

Emperor of the Han dynasty from 180 to 157 BC Emperor Wen of Han漢文帝Huangdi (皇帝)Posthumous Song dynasty depiction of Emperor Wen, detail from the hanging scroll, Refusing the SeatEmperor of the Han dynastyReign14 November 180 – 6 July 157 BCPredecessorEmperor Houshao(Under Empress Lü's regency)SuccessorEmperor JingBornLiu Heng (劉恆)203/02 BCChang'an, Han dynastyDied6 July 157 BC (aged 46)Chang'an, Han dynastyBurialBa Mausoleum [zh] (霸陵)Consorts Lady Lü Empress...

 

Questa voce o sezione tratta di una competizione calcistica in corso. Le informazioni possono pertanto cambiare rapidamente con il progredire degli eventi. Se vuoi scrivere un articolo giornalistico sull'argomento, puoi farlo su Wikinotizie. Non aggiungere speculazioni alla voce. Voce principale: Cosenza Calcio. Cosenza CalcioStagione 2024-2025Lo stadio San Vito-Marulla, campo di casa del Cosenza Sport calcio Squadra Cosenza Allenatore Massimiliano Alvini All. in seconda Renato Montagno...

 

Purported continued existence after death Several terms redirect here. For other uses, see Afterlife (disambiguation), After death (disambiguation), Life after death (disambiguation), and Hereafter (disambiguation).This article uses texts from within a religion or faith system without referring to secondary sources that critically analyze them. Please help improve this article. (September 2021) (Learn how and when to remove this message) A depiction of Idris visiting Heav...

This article contains the Meitei alphabet. Without proper rendering support, you may see errors in display. Meitei Sankirtan (Manipuri Sankirtan)A depiction of Meitei SankirtanTypesRitual singing, drumming and dancingOriginating cultureMeitei cultureOriginating era18th century AD – present Sankirtana, ritual singing, drumming and dancing of ManipurUNESCO Intangible Cultural HeritageDrumming in Meitei cultureCountryIndiaRegionManipurInscription historyInscription2013It's one of the masterpi...

 

Nature park in Mezitli, Mersin, Turkey 100th Anniversary (Gümüşkum) Nature Park100. Yıl (Gümüşkum) Tabiat ParkıA sea turtle spawning place in Gümüşkum100th Anniversary (Gümşkum) NPLocation of the nature park in TurkeyLocationMezitli, Mersin, TurkeyCoordinates36°43′15″N 34°29′43″E / 36.72083°N 34.49528°E / 36.72083; 34.49528Area22.98 ha (56.8 acres)EstablishedNovember 7, 2011; 12 years ago (2011-11-07)Governing bodyDi...