Casson handle

In 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and Michael Freedman (1982) introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds.

Motivation

In the proof of the h-cobordism theorem, the following construction is used. Given a circle in the boundary of a manifold, we would often like to find a disk embedded in the manifold whose boundary is the given circle. If the manifold is simply connected then we can find a map from a disc to the manifold with boundary the given circle, and if the manifold is of dimension at least 5 then by putting this disc in "general position" it becomes an embedding. The number 5 appears for the following reason: submanifolds of dimension m and n in general position do not intersect provided the dimension of the manifold containing them has dimension greater than . In particular, a disc (of dimension 2) in general position will have no self intersections inside a manifold of dimension greater than 2+2.

If the manifold is 4 dimensional, this does not work: the problem is that a disc in general position may have double points where two points of the disc have the same image. This is the main reason why the usual proof of the h-cobordism theorem only works for cobordisms whose boundary has dimension at least 5. We can try to get rid of these double points as follows. Draw a line on the disc joining two points with the same image. If the image of this line is the boundary of an embedded disc (called a Whitney disc), then it is easy to remove the double point. However this argument seems to be going round in circles: in order to eliminate a double point of the first disc, we need to construct a second embedded disc, whose construction involves exactly the same problem of eliminating double points.

Casson's idea was to iterate this construction an infinite number of times, in the hope that the problems about double points will somehow disappear in the infinite limit.

Construction

A Casson handle has a 2-dimensional skeleton, which can be constructed as follows.

  1. Start with a 2-disc .
  2. Identify a finite number of pairs of points in the disc.
  3. For each pair of identified points, choose a path in the disc joining these points, and construct a new disc with boundary this path. (So we add a disc for each pair of identified points.)
  4. Repeat steps 2–3 on each new disc.

We can represent these skeletons by rooted trees such that each point is joined to only a finite number of other points: the tree has a point for each disc, and a line joining points if the corresponding discs intersect in the skeleton.

A Casson handle is constructed by "thickening" the 2-dimensional construction above to give a 4-dimensional object: we replace each disc by a copy of . Informally we can think of this as taking a small neighborhood of the skeleton (thought of as embedded in some 4-manifold). There are some minor extra subtleties in doing this: we need to keep track of some framings, and intersection points now have an orientation.

Casson handles correspond to rooted trees as above, except that now each vertex has a sign attached to it to indicate the orientation of the double point. We may as well assume that the tree has no finite branches, as finite branches can be "unravelled" so make no difference.

The simplest exotic Casson handle corresponds to the tree which is just a half infinite line of points (with all signs the same). It is diffeomorphic to with a cone over the Whitehead continuum removed. There is a similar description of more complicated Casson handles, with the Whitehead continuum replaced by a similar but more complicated set.

Structure

Freedman's main theorem about Casson handles states that they are all homeomorphic to ; or in other words they are topological 2-handles. In general they are not diffeomorphic to as follows from Donaldson's theorem, and there are an uncountable infinite number of different diffeomorphism types of Casson handles. However the interior of a Casson handle is diffeomorphic to ; Casson handles differ from standard 2 handles only in the way the boundary is attached to the interior.

Freedman's structure theorem can be used to prove the h-cobordism theorem for 5-dimensional topological cobordisms, which in turn implies the 4-dimensional topological Poincaré conjecture.

References

Read other articles:

Frederick Cornwallis ConybeareLahir14 September 1856Coulsdon, SurreyMeninggal9 Januari 1924(1924-01-09) (umur 67)PekerjaanOrientalist, teolog, penulis Frederick Cornwallis Conybeare, FBA (14 September 1856 –  9 Januari 1924) adalah seorang orientalis Inggris, Fellow dari University College, Oxford, dan Profesor Teologi di Universitas Oxford. Biography Conybeare lahir di Croydon, Surrey, anak ketiga dari seorang pengacara, John Charles Conybeare, dan cucu dari ahli geolog...

 

Artikel ini bukan mengenai Akademi Kesenian Tiongkok. Akademi Seni Rupa Pusat Tiongkok中央美术学院Nama sebelumnyaKolese Seni Rupa Beijing Nasional[1]JenisNegeriDidirikan1918PresidenFan Di'an (范迪安)Sekretaris PartaiGao Hong (高洪)Staf akademik572Jumlah mahasiswa4,700LokasiDistrik Chaoyang, Beijing, TiongkokKampusPerkotaan, 33 ha (82 ekar)Situs webwww.cafa.edu.cn Akademi Seni Rupa Pusat Tiongkok Hanzi sederhana: 中央美术学院 Hanzi tradisional: 中央美術學院 ...

 

Sony XperiaPembuatSony MobileJenisPonsel cerdas, tablet, phabletTanggal rilis27 Oktober 2008; 15 tahun lalu (2008-10-27)Sistem operasiAndroid (sejak tahun 2010)Windows Mobile (2008–2010)MasukanLayar sentuh Xperia (/ɛkˈspɪəriə/) adalah sebuah merek ponsel cerdas dan tablet milik Sony Mobile. Nama Xperia berasal dari kata experience, dan pertama kali digunakan pada tagline Xperia X1, yakni I Xperia the best. Sony Mobile sebelumnya dikenal secara global dengan nama Sony Ericsson, dan...

Prima Categoria 1912-1913 Competizione Prima Categoria Sport Calcio Edizione 16ª Organizzatore Comitati Regionali e FIGC Date dal 20 ottobre 1912al 1º giugno 1913 Luogo  Italia Partecipanti 30 (10 alle qualificazioni) Formula eliminatorie regionali, girone finale e finalissima nazionale Risultati Vincitore Pro Vercelli(5º titolo) Finalista Lazio Statistiche Incontri disputati 195 Cronologia della competizione 1911-1912 1913-1914 Manuale La Prima Categoria 1912-1913 è st...

 

For other uses, see Privateer (disambiguation). Person or ship engaging in maritime warfare under commission East Indiaman Kent (left) battling Confiance, a privateer commanded by French corsair Robert Surcouf in October 1800, as depicted in a painting by Ambroise Louis Garneray. A privateer is a private person or vessel which engages in maritime warfare under a commission of war.[1] Since robbery under arms was a common aspect of seaborne trade, until the early 19th century all merch...

 

Tritsch-Tratsch-Polka oleh Johann Strauss II Tritsch-Tratsch-Polka op. 214 (juga dikenal sebagai Trish Trash Polka) adalah polka yang ditulis oleh Johann Strauss II pada tahun 1858 setelah sukses dengan tur Rusia di mana ia tampil di musim konser musim panas di Pavlovsk, Saint Petersburg. Judul ini juga dapat ditafsirkan sebagai Chit-chat dan mungkin merujuk pada gairah Wina untuk gosip. Strauss mungkin juga telah mengacu pada tindakan tunggal 'Der Tritsch-tratsch' (dengan musik oleh Adolf M�...

Luhasoo bog in Estonia. The mire has tussocks of heather, and is being colonised by pine trees. This is a list of bogs, wetland mires that accumulate peat from dead plant material, usually sphagnum moss.[1] Bogs are sometimes called quagmires (technically all bogs are quagmires while not all quagmires are necessarily bogs) and the soil which composes them is sometimes referred to as muskeg; alkaline mires are called fens rather than bogs. Locations of bogs Europe Czech Republic Modra...

 

British botanist Benjamin Daydon JacksonBorn(1846-04-03)3 April 1846London, EnglandDied12 October 1927(1927-10-12) (aged 81)London, England Benjamin Daydon Jackson (3 April 1846 – 12 October 1927) was a pioneering botanist and taxonomer who wrote the first volume of Index Kewensis to include all the flowering plants.[1] Biography Jackson was the eldest child of Benjamin Daydon Jackson (c.1806-1855) and Elizabeth Gaze (b.c.1815),[2][3] born in London and educ...

 

Cover of the first volume of the print edition (2010) of Green's Dictionary of Slang. Green's Dictionary of Slang (GDoS) is a multivolume dictionary defining and giving the history of English slang from around the Early Modern English period to the present day written by Jonathon Green. As a historical dictionary it covers not only slang words in use in the present day but also those from the past which are no longer used, and illustrates its definitions with quotations. It is thus comparable...

British prince (born 1960) Prince Andrew redirects here. For other uses, see Prince Andrew (disambiguation). Prince AndrewDuke of York (more)Andrew in 2017Born (1960-02-19) 19 February 1960 (age 64)Buckingham Palace, London, EnglandSpouse Sarah Ferguson ​ ​(m. 1986; div. 1996)​IssueDetail Princess Beatrice Princess Eugenie NamesAndrew Albert Christian Edward[a]HouseWindsorFatherPrince Philip, Duke of EdinburghMotherElizabeth IIEduca...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Spiral torsion spring of metal ribbon used as a power source in mechanical watches and clocks For the 2007 novel by Jay Lake, see Mainspring (novel). An uncoiled modern watch mainspring. Clock mainspring Keys of various sizes for winding up mainsprings on clocks. A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores ener...

في ويكيبيديا عربية يوجد 1٬941 مقالة مرتبطة ببوابة بغداد. تحرير عن بغداد بغداد هي عاصمة جمهورية العراق، ومركز محافظة بغداد. يبلغ عدد سكانها 7,216,040 نسمة تقريباً حسب آخر الإحصائيات في العام 2011 للميلاد مما يجعلها أكبر مدينة في العراق وثاني أكبر مدينة في الوطن العربي بعد القاهر...

 

East German boxer Andreas ZülowZülow in 1985Personal informationFull nameAndreas ZülowNationality East GermanyBorn (1965-10-23) 23 October 1965 (age 58)Ludwigslust, Bezirk Schwerin, East GermanyHeight1.75 m (5 ft 9 in)Weight61 kg (134 lb)SportSportBoxingWeight classLightweightClubSchweriner SC, Schwerin Medal record Representing  East Germany Olympic Games 1988 Seoul Lightweight World Amateur Championships 1989 Moscow Lightweight 1986 Reno Feath...

 

Questa voce sull'argomento calciatori austriaci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Guido BurgstallerNazionalità Austria Altezza187 cm Peso76 kg Calcio RuoloAttaccante Squadra Rapid Vienna CarrieraGiovanili 1996-2003 ASKÖ Gmünd2003-2007 Kärnten Squadre di club1 2007-2008 Kärnten33 (2)2008-2011 Wiener Neustadt81 (12)2011-2014 Rapid Vienna85 (24)2014-2015...

Military campaign, American Civil War For the campaign of the American Revolutionary War, see Southern theater of the American Revolutionary War. Campaign of the CarolinasPart of the Western Theater of the American Civil WarThe Burning of Columbia, South Carolina, onFebruary 17, 1865, as depicted in Harper's WeeklyDateJanuary 1 – April 26, 1865LocationCarolinasResult Union victory: Unconditional surrender of the Army of the South on April 26, 1865 Effective end of the American Civil WarTerr...

 

United States federal district court of South Carolina United States District Court for the District of South Carolina(D.S.C.)LocationCharlestonMore locationsColumbiaC.F. Haynsworth Federal Building and U.S. Courthouse(Greenville)SpartanburgCharles E. Simons Jr. Federal Court House(Aiken)AndersonFlorenceOrangeburgRock HillGreenwoodBeaufortAppeals toFourth CircuitEstablishedOctober 7, 1965Judges10Chief JudgeTimothy M. CainOfficers of the courtU.S. AttorneyAdair Ford BoroughsU.S....

 

В Википедии есть статьи о других людях с фамилиями Савчук и Савчик. Jacques Saoutchikфр. Jacques Saoutchikбел. Iacov Savtchuk Савчик за работой, снимок 1920-х гг. Имя при рождении Яков Савчук Дата рождения 1880(1880) Место рождения Койданово Дата смерти 1955(1955) Место смерти Франция Гражданство  Ф...

Bataille de Dennewitz La bataille de Dennewitz. Informations générales Date 6 septembre 1813 Lieu Dennewitz Issue Victoire alliée Défection de la Bavière Belligérants Empire français Alliés Royaume de Prusse Royaume de Suède Empire russe Commandants Michel Ney Nicolas Oudinot Henri-Gatien Bertrand Jean-Louis Reynier Friedrich von Bülow Emanuel von Tauentzien Jean-Baptiste Bernadotte Curt von Stedingk Forces en présence 58 000 hommes 80 000 hommes Pertes 6 ...

 

County in Lower Silesian Voivodeship, PolandLegnica County Powiat legnickiLiegnitz Kreis (German)County FlagCoat of armsLocation within the voivodeshipDivision into gminas (the red portion is the city of Legnica)Country PolandVoivodeshipLower SilesianSeatLegnicaGminas Total 8 (incl. 1 urban) ChojnówGmina ChojnówGmina KrotoszyceGmina KuniceGmina Legnickie PoleGmina MilkowiceGmina ProchowiceGmina Ruja Area • Total744.6 km2 (287.5 sq mi)Population (201...