Casey's theorem

In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey.

Formulation of the theorem

Let be a circle of radius . Let be (in that order) four non-intersecting circles that lie inside and tangent to it. Denote by the length of the exterior common bitangent of the circles . Then:[1]

Note that in the degenerate case, where all four circles reduce to points, this is exactly Ptolemy's theorem.

Proof

The following proof is attributable[2] to Zacharias.[3] Denote the radius of circle by and its tangency point with the circle by . We will use the notation for the centers of the circles. Note that from Pythagorean theorem,

We will try to express this length in terms of the points . By the law of cosines in triangle ,

Since the circles tangent to each other:

Let be a point on the circle . According to the law of sines in triangle :

Therefore,

and substituting these in the formula above:

And finally, the length we seek is

We can now evaluate the left hand side, with the help of the original Ptolemy's theorem applied to the inscribed quadrilateral :

Further generalizations

It can be seen that the four circles need not lie inside the big circle. In fact, they may be tangent to it from the outside as well. In that case, the following change should be made:[4]

If are both tangent from the same side of (both in or both out), is the length of the exterior common tangent.

If are tangent from different sides of (one in and one out), is the length of the interior common tangent.

The converse of Casey's theorem is also true.[4] That is, if equality holds, the circles are tangent to a common circle.

Applications

Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof[1]: 411  of Feuerbach's theorem uses the converse theorem.

References

  1. ^ a b Casey, J. (1866). "On the Equations and Properties: (1) of the System of Circles Touching Three Circles in a Plane; (2) of the System of Spheres Touching Four Spheres in Space; (3) of the System of Circles Touching Three Circles on a Sphere; (4) of the System of Conics Inscribed to a Conic, and Touching Three Inscribed Conics in a Plane". Proceedings of the Royal Irish Academy. 9: 396–423. JSTOR 20488927.
  2. ^ Bottema, O. (1944). Hoofdstukken uit de Elementaire Meetkunde. (translation by Reinie Erné as Topics in Elementary Geometry, Springer 2008, of the second extended edition published by Epsilon-Uitgaven 1987).
  3. ^ Zacharias, M. (1942). "Der Caseysche Satz". Jahresbericht der Deutschen Mathematiker-Vereinigung. 52: 79–89.
  4. ^ a b Johnson, Roger A. (1929). Modern Geometry. Houghton Mifflin, Boston (republished facsimile by Dover 1960, 2007 as Advanced Euclidean Geometry).

Read other articles:

Keuskupan Lucera–TroiaDioecesis Lucerina-TroianaKatolik Katedral LuceraLokasiNegaraItaliaProvinsi gerejawiFoggia-BovinoStatistikLuas1.337 km2 (516 sq mi)Populasi- Total- Katolik(per 2016)67.600 (perkiraan)66,300 (perkiraan) (98.1%)Paroki33Imam55 (diosesan)20 (Ordo Relijius)6 Deakon PermanenInformasiDenominasiGereja KatolikRitusRitus RomaPendirianAbad ke-4 1986 (penggabungan)KatedralKatedral LuceraKonkatedralKatedral TroiaKepemimpinan kiniPausFransiskusUsku...

 

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Lilongwemenghadap ke timur, wilayah 2 Kota TuaNegara MalawiWilayahWilayah TengahDistrikLilongweKetinggian1.050 m (3,440 ft)Populasi (2009) • Total902.388Zona waktuUTC+2 (CAT) Untuk Lilongwe sebagai distrik, lihat: Distrik Lilongwe. Lilongwe merupakan ibu kota sekaligus kota terbesar kedu...

 

 

NiksNiks, oleh William-Adolphe Bouguereau, 1883Perwujudan malamSimbolMalam, Bayangan dan KegelapanPasanganErebosOrang tuaKhaosSaudaraGaia, Tartaros, Eros, dan ErebosAnakAither, Hemera, Moros, Ker, Thanatos, Hipnos, para Oneiroi, Momos, Oizis, para Hesperides, para Moirai, para Keres, Nemesis, Apate, Filotes, Geras, Eris, Kharon, dan LissaPadanan dalam mitologi RomawiNokslbs Dalam Mitologi Yunani, Niks (bahasa Yunani Kuno: Νύξ, Nyx malam) – Noks dalam terjemahan bahasa Latin – adala...

Matahari dan planet Tata Surya. Pluto dan planet katai lainnya tidak ditampilkan. Ukuran relatif objek digambar menurut skala; jarak diantara mereka tidak diukur. Sebuah foto bumi (dilingkari) yang diambil oleh Voyager 1, dari 6.4 miliar kilometer (4 miliar mil). Garis-garis cahaya merupakan paku difraksi yang memancar dari Matahari (dari bingkai ke kiri). Foto tersebut dikenal sebagai Titik Biru Pucat. Penemuan dan penjelajahan Tata Surya adalah observasi, kunjungan, dan peningkatan pengetah...

 

 

Unincorporated community in Virginia, United States Unincorporated community in Virginia, United StatesSkippers, VirginiaUnincorporated communitySkippers, Virginia Post OfficeSkippersShow map of VirginiaSkippersShow map of the United StatesCoordinates: 36°36′43″N 77°32′48″W / 36.61194°N 77.54667°W / 36.61194; -77.54667CountryUnited StatesStateVirginiaCountyGreensvilleElevation144 ft (44 m)Time zoneUTC−5 (Eastern (EST)) • Summer ...

 

 

Pour les articles homonymes, voir JCI. Jeune Chambre Economique Française Cadre But Créer des changements positifs pour construire une paix universelle, globale et définitive[1] Zone d’influence France Fondation Fondation 1952 Fondateur Yvon Chotard Identité Siège 9/11, rue Alasseur, 75015, Paris, France Président Thomas Guest Vice-président Hélène Saintobert Secrétaire général Mathilde Quintard Trésorier Pauline Le Galloudec Affiliation européenne JCI Europe Affiliation inte...

Final Piala FA 1911TurnamenPiala FA 1910–1911 Bradford City Newcastle United Final Bradford City Newcastle United 0 0 Tanggal22 April 1911StadionCrystal Palace, LondonWasitJohn PearsonPenonton69.068Ulangan Newcastle United Bradford City 1 0 Tanggal26 April 1911StadionOld Trafford, ManchesterWasitJohn PearsonPenonton58.000← 1910 1912 → Final Piala FA 1911 adalah pertandingan sepak bola antara Bradford City dan Newcastle United yang diselenggarakan pada 22 April 1911 di Crystal Pa...

 

 

Voce principale: Vicenza Calcio. S.S. Lanerossi VicenzaStagione 1988-1989Sport calcio SquadraVicenza Calcio Allenatore Ernesto Galli (1ª-4ª) Battista Rota (5ª-30ª) Ernesto Galli (31ª-34ª) Presidente Gastone Celin Serie C13º Coppa ItaliaFase a gironi Coppa Italia Serie COttavi di finale Miglior marcatoreCampionato: Pizzi (16)Totale: Pizzi (17) StadioRomeo Menti 1987-1988 1989-1990 Si invita a seguire il modello di voce Indice 1 Stagione 2 Rosa 3 Calciomercato 4 Risultati 4.1 Serie C1 4...

 

 

Israeli company This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (November 2019) (Learn how and when to remove this template message) Teva apiCompany typeDivision of Teva Pharmaceutical IndustriesIndustryPharmaceuticalFounded1935HeadquartersPetah Tikva, IsraelProductsPharmaceuticalsNumber of employees5,000 (2013)W...

Group of similar cells performing a specific function This article is about biological tissue. For other uses, see Tissue (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tissue biology – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this temp...

 

 

Angles-sur-l'Anglincomune Angles-sur-l'Anglin – Veduta LocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementMontmorillon CantoneMontmorillon TerritorioCoordinate46°42′N 0°53′E / 46.7°N 0.883333°E46.7; 0.883333 (Angles-sur-l'Anglin)Coordinate: 46°42′N 0°53′E / 46.7°N 0.883333°E46.7; 0.883333 (Angles-sur-l'Anglin) Superficie14,62 km² Abitanti394[1] (2009) Densità26,95 ab./km² Alt...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Edera. Associazione Sportiva Calcio Edera TriesteStagione 1949-1950Sport calcio Squadra Edera Trieste Allenatore Umberto Buffalo Presidente Luigi Fogar Serie C10º posto nel girone B. 1948-1949 1950-1951 Si invita a seguire il modello di voc...

Radio station in Jacksonville, FloridaWCGLJacksonville, FloridaBroadcast areaJacksonville, FloridaFrequency1360 kHzBrandingVictory AM 1360ProgrammingFormatUrban gospelAffiliationsAmerican Urban Radio NetworksOwnershipOwnerJBD Communications, Inc.HistoryCall sign meaningWhere Christ Gets LiftedTechnical information[1]Licensing authorityFCCFacility ID30609ClassDPower5,000 watts (day)89 watts (night)Transmitter coordinates30°16′33.00″N 81°38′12.00″W / ...

 

 

Stefan Bajčetić Bajčetić, 2022Informasi pribadiNama lengkap Stefan BajčetićTanggal lahir 22 Oktober 2004 (umur 19)Tempat lahir Vigo, SpanyolTinggi 185 m (606 ft 11 in)[1]Posisi bermain Defender, GelandangInformasi klubKlub saat ini LiverpoolNomor 43Karier junior2013–2020 Celta Vigo2020–2022 LiverpoolKarier senior*Tahun Tim Tampil (Gol)2022– Liverpool 13 (1)Tim nasional2021– Spain U18 3 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga ...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) البطولة الوطنية المجرية 1994–95 تفاصيل الموسم البطولة الوطنية المجرية  النسخة 95  البلد المجر  المن�...

German politician Alexandra Dinges-DierigDinges-Dierig in 2014Member of the BundestagIn office22 September 2013 – 24 October 2017 Personal detailsBorn (1953-02-17) 17 February 1953 (age 71)Lübeck, East GermanyPolitical partyCDUAlma materUniversity of Freiburg Alexandra Dinges-Dierig (born 17 February 1953) is a former German politician from the Christian Democratic Union who served as a member of the Hamburg Parliament and the Bundestag.[1] References ^ Deutscher Bund...

 

 

Politics of the Turks and Caicos Islands Constitution Monarchy Sovereign Charles III Governor Dileeni Daniel-Selvaratnam Deputy Governor of the Turks and Caicos Islands Anya Williams Executive Premier Washington Misick Cabinet Legislative House of Assembly Speaker: Gordon Burton Elections Recent elections General: 2007201220162021 Political parties Progressive NationalParty (PNP) People's DemocraticMovement (PDM) Administrative divisions Citizenship Belonger status British Overseas Territorie...

 

 

American inventor, engineer and businessman Charles Franklin KetteringKettering circa 1934Born(1876 -08-29)August 29, 1876Loudonville, OhioDiedNovember 25, 1958(1958-11-25) (aged 82)Dayton, OhioEducationOhio State UniversitySpouse Olive Leora Williams ​ ​(m. 1905)​ChildrenEugene KetteringParent(s)Jacob and Martha KetteringAwardsFranklin Medal (1936)Hoover Medal (1955)IEEE Edison Medal (1958) Charles Franklin Kettering (August 29, 1876 – November 25, 1...

2006 studio album by In Strict ConfidenceExile ParadiseStudio album by In Strict ConfidenceReleasedMay 2006 (EU) June 2006 (US)RecordedMaschinenraumGenreElectronic musicLength1:02:58LabelMinuswelt Musikfabrik (EU), Metropolis Records (US), Hellion Records (BR), Irond (RU)In Strict Confidence chronology Holy(2004) Exile Paradise(2006) La Parade Monstrueuse(2010) Professional ratingsReview scoresSourceRatingAllMusic[1] Exile Paradise is In Strict Confidence's sixth studio album....

 

 

سك ذهبي طري نورماني من روجر الثاني ملك صقلية، بنقوش عربية، وسكت في باليرمو. الآن في المتحف البريطاني. الثقافة النورمانية العربية البيزنطية،[1] أو الثقافة النورمانية-الصقلية،[2] أو بشكل أقل شمولًا الثقافة النورمانية العربية[3] (يشار إليها أحيانًا باسم «الحضارة ا�...