Organic reactions in which the H in a C–H bond is substituted
This article is about Organometallic pathways involving metal-carbon bonds. For other uses, see Hydrocarbon.
In organic chemistry and organometallic chemistry, carbon–hydrogen bond activation (C−H activation) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a C−X bond (X ≠ H is typically a main group element, like carbon, oxygen, or nitrogen). Some authors further restrict the term C–H activation to reactions in which a C–H bond, one that is typically considered to be "unreactive", interacts with a transition metal center M, resulting in its cleavage and the generation of an organometallic species with an M–C bond. The intermediate of this step (sometimes known as the C−H activation step) could then undergo subsequent reactions with other reagents, either in situ (often allowing the transition metal to be used in a catalytic amount) or in a separate step, to produce the functionalized product.[1]
The alternative term C−H functionalization is used to describe any reaction that converts a relatively inert C−H bond into a C−X bond, irrespective of the reaction mechanism (or with an agnostic attitude towards it). In particular, this definition does not require the cleaved C–H bond to initially interact with the transition metal in the reaction mechanism.[2] In contrast to the organometallic variety, this broadened type of C-H activation is widely employed industrially and in nature. This broader definition encompasses all reactions that would fall under the restricted definition of C–H activation given above. However, it also includes iron-catalyzed alkane C–H hydroxylation reactions that proceed through the oxygen rebound mechanism (e.g. cytochrome P450 enzymes and their synthetic analogues), in which an organometallic species is not believed to be involved in the mechanism. In other cases, organometallic species are indirectly involved. This occurs, for example, with Rh(II)-catalyzed C–H insertion processes in which an electrophilic metal carbene species is generated and the hydrocarbon C–H bond inserts into the carbene carbon without direct interaction of the hydrocarbon with the metal. Other mechanistic possibilities not involving direct C–H bond cleavage by the metal include (i) generation of arylmetal species by electrophilic aromatic substitution mechanism (common for electrophilic Pd, Pt, Au, Hg species), (ii) cleavage of the C–H bond via hydrogen atom abstraction by an O- or N-centered radical, which may then go on to further react and undergo functionalization with or without forming an organometallic intermediate (e.g., Kharasch–Sosnovsky reaction), and (iii) C–H deprotonation at the α-position of a π-system assisted by initial formation of a π-complex with an electrophilic metal to generate a nucleophilic organometallic species (e.g., by cyclopentadienyliron complexes).
Often, when authors make the distinction between C–H functionalization and C−H activation, they will restrict the latter to the narrow sense. However, it may be challenging to definitively demonstrate the involvement or non-involvement of an interaction between the C–H bond and the metal prior to cleavage of the bond. This article discusses C–H functionalization reactions in general but with a focus on C–H activation sensu stricto.
Classification
Mechanisms for C-H activation by metal centers can be classified into three general categories:
(i) Oxidative addition, in which a low-valent metal center inserts into a carbon-hydrogen bond, which cleaves the bond and oxidizes the metal:
LnM + RH → LnM(R)(H)
(ii) Electrophilic activation in which an electrophilic metal attacks the hydrocarbon, displacing a proton:
LnM+ + RH → LnMR + H+
One particularly commonly variant of this category, known as concerted metalation–deprotonation, involves a ligated internal base (often a carboxylate, e.g., acetate or pivalate) simultaneously accepting the displaced proton intramolecularly.
The first C–H activation reaction is often attributed to Otto Dimroth, who in 1902, reported that benzene reacted with mercury(II) acetate (See: organomercury). Many electrophilic metal centers undergo this Friedel-Crafts-like reaction. Joseph Chatt observed the addition of C-H bonds of naphthalene by Ru(0) complexes.[3]
Chelation-assisted C-H activations are prevalent. Shunsuke Murahashi reported a cobalt-catalyzed chelation-assisted C-H functionalization of 2-phenylisoindolin-1-one from (E)-N,1-diphenylmethanimine.[4]
In some cases, discoveries in C-H activation were being made in conjunction with those of cross coupling. In 1969,[6] Yuzo Fujiwara reported the synthesis of (E)-1,2-diphenylethene from benzene and styrene with Pd(OAc)2 and Cu(OAc)2, a procedure very similar to that of cross coupling. On the category of oxidative addition, M. L. H. Green in 1970 reported on the photochemical insertion of tungsten (as a Cp2WH2 complex) in a benzene C–H bond[7] and George M. Whitesides in 1979 was the first to carry out an intramolecularaliphatic C–H activation[8]
The next breakthrough was reported independently by two research groups in 1982. R. G. Bergman reported the first transition metal-mediated intermolecular C–H activation of unactivated and completely saturated hydrocarbons by oxidative addition. Using a photochemical approach, photolysis of Cp*Ir(PMe3)H2, where Cp* is a pentamethylcyclopentadienyl ligand, led to the coordinatively unsaturated species Cp*Ir(PMe3) which reacted via oxidative addition with cyclohexane and neopentane to form the corresponding hydridoalkyl complexes, Cp*Ir(PMe3)HR, where R = cyclohexyl and neopentyl, respectively.[9] W.A.G. Graham found that the same hydrocarbons react with Cp*Ir(CO)2 upon irradiation to afford the related alkylhydrido complexes Cp*Ir(CO)HR, where R = cyclohexyl and neopentyl, respectively.[10] In the latter example, the reaction is presumed to proceed via the oxidative addition of alkane to a 16-electron iridium(I) intermediate, Cp*Ir(CO), formed by irradiation of Cp*Ir(CO)2.
The selective activation and functionalization of alkane C–H bonds was reported using a tungsten complex outfitted with pentamethylcyclopentadienyl, nitrosyl, allyl and neopentyl ligands, Cp*W(NO)(η3-allyl)(CH2CMe3).[11]
In one example involving this system, the alkane pentane is selectively converted to the halocarbon1-iodopentane. This transformation was achieved via the thermolysis of Cp*W(NO)(η3-allyl)(CH2CMe3) in pentane at room temperature, resulting in elimination of neopentane by a pseudo-first-order process, generating an undetectable electronically and sterically unsaturated 16-electron intermediate that is coordinated by an η2-butadiene ligand. Subsequent intermolecular activation of a pentane solvent molecule then yields an 18-electron complex possessing an n-pentyl ligand. In a separate step, reaction with iodine at −60 °C liberates 1-iodopentane from the complex.
Mechanistic understanding
One approach to improving chemical reactions is the understanding of the underlying reaction mechanism. time-resolved spectroscopic techniques can be used to follow the dynamics of the chemical reaction. This technique requires a trigger for initiating the process, which is in most cases illumination of the compound. Photoinitiated reactions of transition metal complexes with alkanes serve as a powerful model systems for understanding the cleavage of the strong C-H bond.[9][10]
In such systems, the sample is illuminated with UV-light, which excites the metal center, leading to ligand dissociation. This dissociation creates a highly reactive, electron deficient 16-electron intermediate, with a vacant coordination site. This species then binds to an alkane molecule, forming a σ-complex (coordination of a C-H bond). In a third step, the metal atom inserts into the C-H bond, cleaving it and yielding the alkyl (or aryl) metal hydride.
The intermediates and their kinetics can be observed using time-resolved spectroscopic techniques (e.g. TR-IR, TR-XAS, TR-RIXS). Time-resolved infrared spectroscopy (TR-IR) is a rather convenient method to observe these intermediates. However, it is only limited to complexes which have IR-active ligands and is prone to correct assignments on the femtosecond timescale due to underlying vibrational cooling. To answer the question of difference in reactivity for distinct complexes, the electronic structure of those needs to be investigated. This can be achieved by X-ray absorption spectroscopy (XAS) or resonant inelastic X-ray scattering (RIXS). These methods have been used to follow the steps of C-H activation with orbital resolution and provide detailed insights into the responsible interactions for the C-H bond breaking.[12][13]
Full characterization of the structure of methane bound to a metal center was reported by Girolami in 2023: isotopic perturbation of equilibrium (IPE) studies involving deuterated isotopologs showed that methane binds to the metal center through a single M···H-C bridge; changes in the 1JCH coupling constants indicate clearly that the structure of the methane ligand is significantly perturbed relative to the free molecule.[14]
Directed C-H activation
Directed-, chelation-assisted-, or "guided" C-H activation involves directing groups that influence regio- and stereochemistry.[15] This is the most useful style of C-H activation in organic synthesis. N,N-dimethylbenzylamine undergoes cyclometalation readily by many transition metals.[16] A semi-practical implementations involve weakly coordinating directing groups, as illustrated by the Murai reaction.[17]
The mechanism for the Pd-catalyzed C-H activation reactions of 2-phenylpyridine involves a metallacycle intermediate. The intermediate is oxidized to form a PdIV species, followed by reductive elimination to form the C-O bond and release the product.[18]
Borylation
Transforming C-H bonds into C-B bonds through borylation has been thoroughly investigated due to their utility in synthesis (i.e. for cross-coupling reactions). John F. Hartwig reported a highly regioselective arene and alkane borylation catalyzed by a rhodium complex. In the case of alkanes, exclusive terminal functionalization was observed.[19]
Later, ruthenium catalysts were discovered to have higher activity and functional group compatibility.[20]
Other borylation catalysts have also been developed, including iridium-based catalysts, which activate C-H bonds with high compatibility.[21][22][23]
Although chemists have failed to develop a commercial process for selective C-H activation of methane, such a reaction is the basis of reverse methanogenesis. In this nickel-catalyzed process, methane is converted to the methyl substituent of coenzyme M, CH3SCH2CH2SO−3.[24]
Naturally occurringmethane is not utilized as a chemical feedstock, despite its abundance and low cost. Current technology makes prodigious use of methane by steam reforming to produce syngas, a mixture of carbon monoxide and hydrogen. This syngas is then used in Fischer-Tropsch reactions to make longer carbon chain products or methanol, one of the most important industrial chemical feedstocks.[25][26] An intriguing method to convert these hydrocarbons involves C-H activation. Roy A. Periana, for example, reported that complexes containing late transition metals, such as Pt, Pd, Au, and Hg, react with methane (CH4) in H2SO4 to yield methyl bisulfate.[27][28] The process has not however been implemented commercially.
Asymmetric C-H activations
The total synthesis of lithospermic acid employs guided C-H functionalization late stage to a highly functionalized system. The directing group, a chiral nonracemic imine, is capable of performing an intramolecular alkylation, which allows for the rhodium-catalyzed conversion of imine to the dihydrobenzofuran.[30]
The total synthesis of calothrixin A and B features an intramolecular Pd-catalyzed cross coupling reaction via C-H activation, an example of a guided C-H activation. Cross coupling occurs between aryl C-I and C-H bonds to form a C-C bond.[31] The synthesis of a mescaline analogue employs the rhodium-catalyzed enantioselective annulation of an aryl imine via a C-H activation.[32]
Alkene isomerization
One type of useful transition metal C-H bond activations are alkene isomerization. At least two mechanisms are recognized. For alkene-metal hydrides, isomerization can proceed via migratory insertion, followed by beta-hydride elimination. This process is the basis of chain walking. Another mechanism for alkene isomerization is the conversion of an alkene complex to an allyl-hydride complex.[33]
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. (1995). "Selective Intermolecular Carbon–Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution". Accounts of Chemical Research. 28 (3): 154–162. doi:10.1021/ar00051a009.
Crabtree, R. H. (2001). "Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress – a new millennium in prospect". J. Chem. Soc., Dalton Trans. 17 (17): 2437–2450. doi:10.1039/B103147N.
Organometallic C–H Bond Activation: An Introduction Alan S. Goldman and Karen I. Goldberg ACS Symposium Series 885, Activation and Functionalization of C–H Bonds, 2004, 1–43
Periana, R. A.; Bhalla, G.; Tenn, W. J.; III; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C.; Ziatdinov, V. R. (2004). "Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the C–H activation reaction". Journal of Molecular Catalysis A: Chemical. 220 (1): 7–25. doi:10.1016/j.molcata.2004.05.036.
Lersch, M.Tilset (2005). "Mechanistic Aspects of C−H Activation by Pt Complexes". Chem. Rev. 105 (6): 2471–2526. doi:10.1021/cr030710y. PMID15941220., Vedernikov, A. N. (2007). "Recent Advances in the Platinum-mediated CH Bond Functionalization". Curr. Org. Chem. 11 (16): 1401–1416. doi:10.2174/138527207782418708.
Shulpin, G. B. (2010). "Selectivity enhancement in functionalization of C–H bonds: A review". Org. Biomol. Chem. 8 (19): 4217–4228. doi:10.1039/c004223d. PMID20593075.
Hashiguchi, B. G.; Bischof, S. M.; Konnick, M. M.; Periana, R. A. (2012). "Designing Catalysts for Functionalization of Unactivated C–H Bonds Based on the CH Activation Reaction". Acc. Chem. Res. 45 (6): 885–898. doi:10.1021/ar200250r. PMID22482496.
Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. (2012). "Beyond Directing Groups: Transition Metal-Catalyzed C H Activation of Simple Arenes". Angew. Chem. Int. Ed. 51 (41): 10236–10254. doi:10.1002/anie.201203269. PMID22996679.
Wencel-Delord, J.; Glorius, F. (2013). "C–H bond activation enables the rapid construction and late-stage diversification of functional molecules". Nature Chemistry. 5 (5): 369–375. Bibcode:2013NatCh...5..369W. doi:10.1038/nchem.1607. PMID23609086.
^Chatt, J.; Davidson, J. M. (1965). "The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0), and the preparation of new types of hydrido-complexes of ruthenium(II)". J. Chem. Soc.1965: 843. doi:10.1039/JR9650000843.
^Murahashi, Shunsuke (1955-12-01). "Synthesis of Phthalimidines from Schiff Bases and Carbon Monoxide". Journal of the American Chemical Society. 77 (23): 6403–6404. doi:10.1021/ja01628a120. ISSN0002-7863.
^Fekl, U.; Goldberg, K. I. (2003). Homogeneous Hydrocarbon C-H Bond Activation and Functionalization with Platinum. Advances in Inorganic Chemistry. Vol. 54. pp. 259–320. doi:10.1016/S0898-8838(03)54005-3. ISBN9780120236541.
^Fujiwara, Yuzo; Noritani, Ichiro; Danno, Sadao; Asano, Ryuzo; Teranishi, Shiichiro (1969-12-01). "Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate". Journal of the American Chemical Society. 91 (25): 7166–7169. doi:10.1021/ja01053a047. ISSN0002-7863. PMID27462934.
^Green, M. L.; Knowles, P. J. (1970). "Formation of a tungsten phenyl hydride derivatives from benzene". J. Chem. Soc. D. 24 (24): 1677. doi:10.1039/C29700001677.
^Foley, Paul; Whitesides, George M. (1979). "Thermal generation of bis(triethylphosphine)-3,3-dimethylplatinacyclobutane from dineopentylbis(triethylphosphine)platinum(II)". J. Am. Chem. Soc.101 (10): 2732–2733. doi:10.1021/ja00504a041.
^ abJanowicz, Andrew H.; Bergman, Robert G. (1982). "Carbon–hydrogen activation in saturated hydrocarbons: direct observation of M + R−H → M(R)(H)". J. Am. Chem. Soc.104 (1): 352–354. doi:10.1021/ja00365a091.
^ abHoyano, James K.; Graham, William A. G. (1982). "Oxidative addition of the carbon–hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex". J. Am. Chem. Soc.104 (13): 3723–3725. doi:10.1021/ja00377a032.
^Baillie, Rhett A.; Legzdins, Peter (2013). "Distinctive Activation and Functionalization of Hydrocarbon C–H Bonds Initiated by Cp*W(NO)(η3-allyl)(CH2CMe3) Complexes". Acc. Chem. Res. 47 (2): 330–340. doi:10.1021/ar400108p. PMID24047442.
^Chetcuti, Michael J.; Ritleng, Vincent (2007). "Formation of a Ruthenium–Arene Complex, Cyclometallation with a Substituted Benzylamine, and Insertion of an Alkyne". J. Chem. Educ. 84 (6): 1014. Bibcode:2007JChEd..84.1014C. doi:10.1021/ed084p1014.
^Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. (2006). "Ruthenium-Catalyzed Regiospecific Borylation of Methyl C-H bonds". J. Am. Chem. Soc. 128 (42): 13684–13685. doi:10.1021/ja064092p. PMID17044685.
^Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. (2002). "Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate". J. Am. Chem. Soc. 124 (3): 390–391. doi:10.1021/ja0173019. PMID11792205.
^Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. (2002). "A Stoichiometric Aromatic C-H Borylation Catalyzed by Iridium(I)/2,2′-Bipyridine Complexes at Room Temperature". Angewandte Chemie International Edition. 41 (16): 3056–3058. doi:10.1002/1521-3773(20020816)41:16<3056::aid-anie3056>3.0.co;2-#. PMID12203457.
^Press, L. P.; Kosanovich, A. J.; McCulloch, B. J.; Ozerov, O. V. (2016). "High-Turnover Aromatic C–H Borylation Catalyzed by POCOP-Type Pincer Complexes of Iridium". J. Am. Chem. Soc. 138 (30): 9487–9497. doi:10.1021/jacs.6b03656. PMID27327895.
^Sen, A. (1999). "Catalytic Activation of Methane and Ethane by Metal Compounds". In Murai, S. (ed.). Activation of Unreactive Bonds and Organic Synthesis. Vol. 3. Springer Berlin Heidelberg. pp. 81–95. ISBN978-3-540-64862-8.
^Davies, H. M. L.; Morton, D. (2011). "Guiding Principles for Site Selective and Stereoselective Intermolecular C–H Functionalization by Donor/Acceptor Rhodium Carbenes". Chemical Society Reviews. 40 (4): 1857–69. doi:10.1039/C0CS00217H. PMID21359404.
^O'Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. (2005). "Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via Catalytic C-H Bond Activation". J. Am. Chem. Soc. 127 (39): 13496–13497. doi:10.1021/ja052680h. PMID16190703.
^Ramkumar, N.; Nagarajan, R. (2013). "b. Total Synthesis of Calothrixin A and B via C-H Activation". J. Org. Chem. 78 (6): 2802–2807. doi:10.1021/jo302821v. PMID23421392.
^Ahrendt, Kateri A.; Bergman, Robert G.; Ellman, Jonathan A. (2003-04-01). "Synthesis of a Tricyclic Mescaline Analogue by Catalytic C−H Bond Activation". Organic Letters. 5 (8): 1301–1303. doi:10.1021/ol034228d. ISSN1523-7060. PMID12688744.
^Molloy, John J.; Morack, Tobias; Gilmour, Ryan (2019). "Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy". Angewandte Chemie International Edition. 58 (39): 13654–13664. doi:10.1002/anie.201906124. PMID31233259.
BawarchiPoster PromosionalSutradaraHrishikesh MukherjeeProduserHrishikesh Mukherjee,N.C. Sippy,Romu N. SippyDitulis olehTapan SinhaPemeranRajesh Khanna,Jaya Badhuri,AsraniNaratorAmitabh BachchanPenata musikMadan MohanTanggal rilis 7 Juli 1972 (1972-07-07) (India) NegaraIndiaBahasaHindi Bawarchi (Devnagari: बावर्ची, terjemahan: Tukang Masak) adalah sebuah film Hindi 1972 yang disutradarai oleh Hrishikesh Mukherjee serta dibintangi oleh Rajesh Khanna dan Jaya Badhur...
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Novembro de 2019) Miss Brasil 2014 Miss Brasil 2014A cidade de Fortaleza sediou o evento. Apresentadores Renata Fan e André Vasco Bastidores Patrícia Maldonado Data 27 de setembro de 2014 Candidatas 27 Atração Musical Emin Transmissão...
This page is currently being merged. After a discussion, consensus to merge this page with School bullying was found. You can help implement the merge by following the instructions at Help:Merging and the resolution on the discussion. Process started in October 2022. Bullying is abusive social interaction between peers and can include aggression, harassment, and violence. Bullying is typically repetitive and enacted by those who are in a position of power over the victim. A growing body o...
Norman Noble For other people with this name, see Tancred. Tancred of HautevilleSeigneur of Hauteville-la-GuichardSuccessorSerlo IBornc. 980Died1041Noble familyHautevilleSpouse(s)MuriellaFressendaIssuemoreSerlo I Geoffrey William Iron Arm Drogo Humphrey Robert Guiscard Mauger William of the Principate Roger I of Sicily Tancred of Hauteville (c. 980 – 1041) was an 11th-century Norman petty lord about whom little is known. He was a minor noble near Coutances in the Cotentin. Tancred is pr...
Медиафайлы на Викискладе Медали СССР — государственные награды Советского Союза, призванные поощрить за особые заслуги в коммунистическом строительстве, защите социалистического Отечества, а также за иные особые заслуги перед государством и обществом. Государс�...
Contoh sebuah kolofon (cetakan tahun 1471) Kolofon dalam dunia percetakan atau pembuatan buku dapat berarti: Pemerian singkat mengenai catatan penerbitan atau produksi yang relevan dengan edisi tersebut. Dalam buku-buku modern biasanya ditempatkan pada bagian verso halaman judul, tetapi kadang kala juga ditempatkan di akhir buku, atau Tanda percetakan atau logotype Catatan produksi Pada buku-buku awal yang dicetak, kolofon, jika ada, merupakan pemerian singkat mengenai pencetakan dan penerbit...
Diskografi TaeyangTaeyang pada tahun 2012.Album studio2Album rekaman langsung2Video musik10Extended play1Singel9 Penyanyi asal Korea Selatan, Taeyang, memulai kariernya sebagai vokalis utama grup hip hop Big Bang. Diskografinya sebagai penyanyi solo dimulai pada tahun 2008 dan terdiri dari dua album studio, satu album mini, dua album live dan beberapa singel. Album Album studio Judul Detail album Posisi puncak tangga lagu Penjualan KOR[1] JPN[2] US[3] US Heat[3]...
King of Anuradhapura from 195 to 196 Kuda NagaKing of AnuradhapuraReign195 – 196PredecessorCula NagaSuccessorSiri Naga IDynastyHouse of Lambakanna IFatherKanittha Tissa Kuda Naga (a.k.a. Kunchanaga) was King of Anuradhapura in the 2nd century, whose reign lasted from 195 to 196.[1] He succeeded his brother Cula Naga as King of Anuradhapura and was assassinated and succeeded by his brother-in-law, Siri Naga I. See also List of Sri Lankan monarchs History of Sri Lanka References ^ Bla...
Hypothetical artificial intelligence scenario Robots revolt in R.U.R., a 1920 Czech play translated as Rossum's Universal Robots Part of a series onArtificial intelligence Major goals Artificial general intelligence Recursive self-improvement Planning Computer vision General game playing Knowledge reasoning Machine learning Natural language processing Robotics AI safety Approaches Symbolic Deep learning Bayesian networks Evolutionary algorithms Situated approach Hybrid intelligent systems Sys...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري البيلاروسي الممتاز 1997 تفاصيل الموسم الدوري البيلاروسي الممتاز النسخة 7 البلد بيلاروس ا�...
Te Wei Te Wei (Hanzi: 特偉) (22 Agustus 1915 – 4 Februari 2010[1]) adalah seorang animator Cina. Ia banyak dikenal karena film animasi pendek buatannya tahun 1956, The Conceited General. Sejak 1960, gaya animasinya dipengaruhi oleh pelukis Qi Baishi. Karena film-film animasinya terhambat selama Revolusi Budaya, Te Wei memperoleh kembali pengaruh artistiknya pada akhir 1970-an dan 1980-an dengan serangkaian film animasi dalam gaya lukisan. Filmografi The Conceited...
Category 5 Atlantic hurricane in 2017 This article is about the Atlantic hurricane of 2017. For other storms of the same name, see List of storms named Maria. Hurricane Maria Maria near peak intensity while southeast of the U.S. Virgin Islands late on September 19Meteorological historyFormedSeptember 16, 2017ExtratropicalSeptember 30, 2017DissipatedOctober 2, 2017Category 5 major hurricane1-minute sustained (SSHWS/NWS)Highest winds175 mph (280 km/h)Lowest pressure908 mbar ...
Family of genetic skin disorders Medical conditionIchthyosisOther namesIchthyosesIchthyosis is characterized by generalised, scaly skin.SpecialtyDermatology Ichthyosis (also named fish scale disease)[1] is a family of genetic skin disorders characterized by dry, thickened, scaly skin.[2] The more than 20 types of ichthyosis range in severity of symptoms, outward appearance, underlying genetic cause and mode of inheritance (e.g., dominant, recessive, autosomal or X-linked).[...
Recurring periods of influenza Influenza epidemic redirects here. Not to be confused with Influenza pandemic. This article is about the annual period when flu becomes prevalent. For the TV episode, see Flu Season (Parks and Recreation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with the United States and do not represent a ...
Boeing Model 247 adalah pesawat awal sayap rendah (low wing) Amerika Serikat, dianggap sebagai pesawat yang pertama untuk sepenuhnya menggabungkan[1][2] kemajuan seperti semua logam (aluminium anodized) konstruksi semi-monocoque, sayap kantilever dan landing gear tarik. Fitur canggih lainnya termasuk kontrol permukaan memangkas tab, autopilot dan deicing sepatu untuk sayap dan tailplane.[3] Referensi ^ Model 247 Commercial Transport. boeing.com, 2009. Retrieved: June ...
Drucker CBM 4022 Der Matrixdrucker CBM 4022 (bzw. CBM 4022P) von Commodore International wurde für die CBM-3000-Serie, CBM-4000-Serie und CBM-8000-Serie eingesetzt und weist folgende Eigenschaften auf: Druckgeschwindigkeit: 30 Zeilen pro Minute bei 80 Zeichen je Zeile Druckrichtung unidirektional, CBM 4022P bidirektional (und war damit schneller) Schriftart: 6 × 8 Punktematrix Schreibdichte: 10 Zeichen je Zoll Zeilenabstand: programmierbar Zeichengröße: Höhe = 2,8 mm (0,11 ″)...