As a way to reduce fossil fuel emissions, the US Navy tested a 50-50 mix of jet aviation fuel and biofuel derived from camelina seeds in 2010.[1] A study published in December 2016 explained that the current low price of conventional kerosene-based jet fuel makes it cost-prohibitive for commercial airlines to use camelina-based jet fuel. The study said substantial government intervention would be one way to create a market for camelina, by combining 9 percent government subsidy on camelina crop production, with 9 percent tax on conventional fuel.[2]
Etymology
The name Camelina comes from the Greek for "ground" and "flax", alluding to its being a weed which suppresses the vigour of flax crops.[3]
The first full genome sequence for Camelina sativa was released on 1 August 2013, by a Canadian research team. The genome sequence and its annotation are available in a genome viewer format and enabled for sequence searching and alignment.[5] Technical details of Camelina's genome sequence were published on 23 April 2014 in the academic journal Nature Communications.[6]
In 2013, Rothamsted Research in the UK reported they had developed a genetically modified form of Camelina sativa that produced Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) at levels equivalent to fish oil.[7] EPA and DHA are long-chain omega-3 fatty acids which are beneficial for cardiovascular health. The main source of these omega-3 fatty acids is fish but supplies are limited and unsustainable.[8][9] In October 2023, Yield10 Bioscience acquired an exclusive commercial license for the Rothansted's EPA/DHA Camelina.[10] In January 2024, Yield10 requested a Regulatory Status Review from USDA-APHIS for the modified Camelina.[11]
Species
Four common species are presented below. However, at least two databanks indicate more species may exist.[12]
Biodiesel made from camelina has a variety of benefits. First, traditional petroleum or diesel fuel is not renewable resources, the production of these resources is finite. Camelina biodiesel, however, is a renewable resource. Camelina based aviation fuel could save 84% of carbon emissions.[14] Camelina biodiesel can be produced in large quantities as feedstocks are enough. Moreover, camelina biodiesel can reduce a country's dependence on fossil resources, which can ensure a country's energy security. In addition, camelina biodiesel is an environmentally friendly fuel, and it is biodegradable.[15] The greenhouse gas emission of camelina biodiesel produced by no-till farming is lower than that of traditional methods.[16]
^Attractions, Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and. "FloraBase—the Western Australian Flora". florabase.dec.wa.gov.au. Archived from the original on 2011-03-28. Retrieved 2012-12-12.{{cite web}}: CS1 maint: multiple names: authors list (link)
^Simopoulos, Artemis P. and Cleland, Leslie G. (Editors) "Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence" (World Review of Nutrition and Dietetics), Publisher: S Karger AG, 19 September 2003, ISBN978-3805576406, Page 34
^Coghlan, Andy (4 January 2014) "Designed plant oozes vital fish oils"' New Scientist, Page 12, also available on the Internet at [1]Archived 1 June 2015 at the Wayback Machine
^Österreichische botanische Zeitschrift (in German). Springer-Verlag. 1891. p. 123. Retrieved 18 May 2021. Die zweite interessante Crucifere ist Camelina rumelica Velen., welche ich schon im Jahre 1887 aus Bulgarien beschrieben und abgebildet habe.
^Quan, He (2016). "An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia". Industrial Crops & Products. 81: 162–168. doi:10.1016/j.indcrop.2015.11.073.