In economics, a budget-additive valuation is a kind of a utility function. It corresponds to a person that, when given a set of items, evaluates them in the following way:[1]
For each item j, there is a fixed value vj.
There is also a fixed budget B.
The value of the set of items is the minimum between B and the sum of values of items in the set.
Every additive valuation is a special case of a budget-additive valuation, in which the budget is infinite. Every budget-additive valuation is a submodular valuation.
^Buchfuhrer, Dave; Dughmi, Shaddin; Fu, Hu; Kleinberg, Robert; Mossel, Elchanan; Papadimitriou, Christos; Schapira, Michael; Singer, Yaron; Umans, Chris (2010-01-17), "Inapproximability for VCG-Based Combinatorial Auctions", Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms, Proceedings, Society for Industrial and Applied Mathematics, pp. 518–536, doi:10.1137/1.9781611973075.45, ISBN978-0-89871-701-3
^Azar, Yossi; Birnbaum, Benjamin; Karlin, Anna R.; Mathieu, Claire; Nguyen, C. Thach (2008). "Improved Approximation Algorithms for Budgeted Allocations". In Aceto, Luca; Damgård, Ivan; Goldberg, Leslie Ann; Halldórsson, Magnús M.; Ingólfsdóttir, Anna; Walukiewicz, Igor (eds.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 5125. Berlin, Heidelberg: Springer. pp. 186–197. doi:10.1007/978-3-540-70575-8_16. ISBN978-3-540-70575-8.
^Kalaitzis, Christos (2015-12-21). "An Improved Approximation Guarantee for the Maximum Budgeted Allocation Problem". Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics. pp. 1048–1066. doi:10.1137/1.9781611974331.ch74. ISBN978-1-61197-433-1.