Borsuk's conjecture

An example of a hexagon cut into three pieces of smaller diameter.

The Borsuk problem in geometry, for historical reasons[note 1] incorrectly called Borsuk's conjecture, is a question in discrete geometry. It is named after Karol Borsuk.

Problem

In 1932, Karol Borsuk showed[2] that an ordinary 3-dimensional ball in Euclidean space can be easily dissected into 4 solids, each of which has a smaller diameter than the ball, and generally n-dimensional ball can be covered with n + 1 compact sets of diameters smaller than the ball. At the same time he proved that n subsets are not enough in general. The proof is based on the Borsuk–Ulam theorem. That led Borsuk to a general question:[2]

Die folgende Frage bleibt offen: Lässt sich jede beschränkte Teilmenge E des Raumes in (n + 1) Mengen zerlegen, von denen jede einen kleineren Durchmesser als E hat?

The following question remains open: Can every bounded subset E of the space be partitioned into (n + 1) sets, each of which has a smaller diameter than E?

— Drei Sätze über die n-dimensionale euklidische Sphäre

The question was answered in the positive in the following cases:

  • n = 2 — which is the original result by Karol Borsuk (1932).
  • n = 3 — shown by Julian Perkal (1947),[3] and independently, 8 years later, by H. G. Eggleston (1955).[4] A simple proof was found later by Branko Grünbaum and Aladár Heppes.
  • For all n for smooth convex fields — shown by Hugo Hadwiger (1946).[5][6]
  • For all n for centrally-symmetric fields — shown by A.S. Riesling (1971).[7]
  • For all n for fields of revolution — shown by Boris Dekster (1995).[8]

The problem was finally solved in 1993 by Jeff Kahn and Gil Kalai, who showed that the general answer to Borsuk's question is no.[9] They claim that their construction shows that n + 1 pieces do not suffice for n = 1325 and for each n > 2014. However, as pointed out by Bernulf Weißbach,[10] the first part of this claim is in fact false. But after improving a suboptimal conclusion within the corresponding derivation, one can indeed verify one of the constructed point sets as a counterexample for n = 1325 (as well as all higher dimensions up to 1560).[11]

Their result was improved in 2003 by Hinrichs and Richter, who constructed finite sets for n ≥ 298, which cannot be partitioned into n + 11 parts of smaller diameter.[1]

In 2013, Andriy V. Bondarenko had shown that Borsuk's conjecture is false for all n ≥ 65.[12] Shortly after, Thomas Jenrich derived a 64-dimensional counterexample from Bondarenko's construction, giving the best bound up to now.[13][14]

Apart from finding the minimum number n of dimensions such that the number of pieces α(n) > n + 1, mathematicians are interested in finding the general behavior of the function α(n). Kahn and Kalai show that in general (that is, for n sufficiently large), one needs many pieces. They also quote the upper bound by Oded Schramm, who showed that for every ε, if n is sufficiently large, .[15] The correct order of magnitude of α(n) is still unknown.[16] However, it is conjectured that there is a constant c > 1 such that α(n) > cn for all n ≥ 1.

Oded Schramm also worked in a related question, a body of constant width is said to have effective radius if , where is the unit ball in , he proved the lower bound , where is the smallest effective radius of a body of constant width 2 in and asked if there exists such that for all ,[17][18] that is if the gap between the volumes of the smallest and largest constant-width bodies grows exponentially. In 2024 a preprint by Arman, Bondarenko, Nazarov, Prymak, Radchenko reported to have answered this question in the affirmative giving a construction that satisfies .[19][20][21]

See also

Note

  1. ^ As Hinrichs and Richter say in the introduction to their work,[1] the "Borsuk's conjecture [was] believed by many to be true for some decades" (hence commonly called a conjecture) so "it came as a surprise when Kahn and Kalai constructed finite sets showing the contrary". However, Karol Borsuk has formulated the problem just as a question, not suggesting the expected answer would be positive.

References

  1. ^ a b Hinrichs, Aicke; Richter, Christian (28 August 2003). "New sets with large Borsuk numbers". Discrete Mathematics. 270 (1–3). Elsevier: 137–147. doi:10.1016/S0012-365X(02)00833-6.
  2. ^ a b Borsuk, Karol (1933), "Drei Sätze über die n-dimensionale euklidische Sphäre" [Three theorems about the n-dimensional Euclidean sphere] (PDF), Fundamenta Mathematicae (in German), 20: 177–190, doi:10.4064/fm-20-1-177-190
  3. ^ Perkal, Julian (1947), "Sur la subdivision des ensembles en parties de diamètre inférieur", Colloquium Mathematicum (in French), 2: 45
  4. ^ Eggleston, H. G. (1955), "Covering a three-dimensional set with sets of smaller diameter", Journal of the London Mathematical Society, 30: 11–24, doi:10.1112/jlms/s1-30.1.11, MR 0067473
  5. ^ Hadwiger, Hugo (1945), "Überdeckung einer Menge durch Mengen kleineren Durchmessers", Commentarii Mathematici Helvetici (in German), 18 (1): 73–75, doi:10.1007/BF02568103, MR 0013901, S2CID 122199549
  6. ^ Hadwiger, Hugo (1946), "Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers", Commentarii Mathematici Helvetici (in German), 19 (1): 72–73, doi:10.1007/BF02565947, MR 0017515, S2CID 121053805
  7. ^ Riesling, A. S. (1971), "Проблема Борсука в трехмерных пространствах постоянной кривизны" [Borsuk's problem in three-dimensional spaces of constant curvature] (PDF), Ukr. Geom. Sbornik (in Russian), 11, Kharkov State University (now National University of Kharkiv): 78–83
  8. ^ Dekster, Boris (1995), "The Borsuk conjecture holds for fields of revolution", Journal of Geometry, 52 (1–2): 64–73, doi:10.1007/BF01406827, MR 1317256, S2CID 121586146
  9. ^ Kahn, Jeff; Kalai, Gil (1993), "A counterexample to Borsuk's conjecture", Bulletin of the American Mathematical Society, 29 (1): 60–62, arXiv:math/9307229, doi:10.1090/S0273-0979-1993-00398-7, MR 1193538, S2CID 119647518
  10. ^ Weißbach, Bernulf (2000), "Sets with Large Borsuk Number" (PDF), Beiträge zur Algebra und Geometrie (in German), 41 (2): 417–423
  11. ^ Jenrich, Thomas (2018), On the counterexamples to Borsuk's conjecture by Kahn and Kalai, arXiv:1809.09612v4
  12. ^ Bondarenko, Andriy (2014) [2013], "On Borsuk's Conjecture for Two-Distance Sets", Discrete & Computational Geometry, 51 (3): 509–515, arXiv:1305.2584, doi:10.1007/s00454-014-9579-4, MR 3201240
  13. ^ Jenrich, Thomas (2013), A 64-dimensional two-distance counterexample to Borsuk's conjecture, arXiv:1308.0206, Bibcode:2013arXiv1308.0206J
  14. ^ Jenrich, Thomas; Brouwer, Andries E. (2014), "A 64-Dimensional Counterexample to Borsuk's Conjecture", Electronic Journal of Combinatorics, 21 (4): #P4.29, doi:10.37236/4069, MR 3292266
  15. ^ Schramm, Oded (1988), "Illuminating sets of constant width", Mathematika, 35 (2): 180–189, doi:10.1112/S0025579300015175, MR 0986627
  16. ^ Alon, Noga (2002), "Discrete mathematics: methods and challenges", Proceedings of the International Congress of Mathematicians, Beijing, 1: 119–135, arXiv:math/0212390, Bibcode:2002math.....12390A
  17. ^ Schramm, Oded (June 1988). "On the volume of sets having constant width". Israel Journal of Mathematics. 63 (2): 178–182. doi:10.1007/BF02765037. ISSN 0021-2172.
  18. ^ Kalai, Gil (2015-05-19). "Some old and new problems in combinatorial geometry I: Around Borsuk's problem". arXiv:1505.04952 [math.CO].
  19. ^ Arman, Andrii; Bondarenko, Andriy; Nazarov, Fedor; Prymak, Andriy; Radchenko, Danylo (2024-05-28). "Small volume bodies of constant width". arXiv:2405.18501 [math.MG].
  20. ^ Kalai, Gil (2024-05-31). "Andrii Arman, Andriy Bondarenko, Fedor Nazarov, Andriy Prymak, and Danylo Radchenko Constructed Small Volume Bodies of Constant Width". Combinatorics and more. Retrieved 2024-09-28.
  21. ^ Barber, Gregory (2024-09-20). "Mathematicians Discover New Shapes to Solve Decades-Old Geometry Problem". Quanta Magazine. Retrieved 2024-09-28.

Further reading

Read other articles:

Ministerio de Educación y Cultura Finés: opetus- ja kulttuuriministeriöSueco: undervisnings- och kulturministeriet LocalizaciónPaís Finlandia FinlandiaLocalidad HelsinkiCoordenadas 60°10′17″N 24°57′30″E / 60.171437479487, 24.958367620176Información generalSigla OKMJurisdicción FinlandiaTipo MinisterioSede Meritullinkatu 1,00170 HelsinkiOrganizaciónMinistros Anna-Maja Henriksson (Ministra de Educación)Sari Multala (Ministra de Ciencia y Cultura)Secretari...

Hyatt Regency San Francisco LocalizaciónPaís Estados UnidosUbicación San FranciscoCoordenadas 37°47′39″N 122°23′46″O / 37.7943, -122.396Información generalUsos hotelConstrucción 1973Inauguración 1973Detalles técnicosPlantas 20Diseño y construcciónArquitecto John Portmanhttps://sanfrancisco.regency.hyatt.com/[editar datos en Wikidata] Hyatt Regency San Francisco es un hotel ubicado al pie de Market Street y The Embarcadero en el Distrito Financiero ...

20th-century international organisation, predecessor to the United Nations Not to be confused with Commonwealth of Nations or Nations League. This article is about the intergovernmental organisation. For the group in professional wrestling, see League of Nations (professional wrestling). League of NationsSociété des Nations1920–1946 Semi-official Flag (1939) Semi-official emblem (1939) Anachronous world map showing member states of the League during its 26-year historyStatusIntergovernmen...

КалеруелаCaleruela Герб {{{official_name}}}ГербПрапорМуніципалітетКраїна  ІспаніяАвтономна спільнота Кастилія-Ла-МанчаПровінція ТоледоКоординати 39°52′26″ пн. ш. 5°15′32″ зх. д. / 39.874° пн. ш. 5.259° зх. д. / 39.874; -5.259Координати: 39°52′26″ пн. ш. 5°15′32″&#...

  「李夫人」重定向至此。关于其他用法,请见「李夫人 (消歧义)」。 孝武皇后李氏李夫人的图像,来自《百美新詠圖傳》姓李名李氏姓名不詳,野史記載為“李妍”谥号孝武皇后墓葬英陵(集仙台)親屬夫汉武帝刘彻兄弟协律都尉李延年海西侯贰师将军李广利李季子昌邑哀王刘髆其他親屬孙:昌邑王刘贺 孝武皇后李氏(前2世纪—前100年代),姓李,名不详,中國�...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Democratic Unity – news · newspapers · books · scholar · JSTOR (February 2022) Bolivian electoral and political coalition Democratic Unity Unidad DemócrataAbbreviationUDPresidentRubén CostasFoundersRubén CostasSamuel Doria MedinaFounded17 June...

Ethnic group native to Scotland This article is about the Scottish people as an ethnic group. For residents or nationals of Scotland, see Demography of Scotland. Scotsman redirects here. For other uses, see Scotsman (disambiguation). Scot redirects here. For people and other things named Scott or Scot, see Scott. For other uses, see Scot (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourc...

United States National Wildlife Refuge in Virginia Plum Tree Island National Wildlife RefugeIUCN category IV (habitat/species management area)Aerial view of Plum Tree Island National Wildlife RefugeShow map of VirginiaShow map of the United StatesLocationPoquoson, Virginia, United StatesCoordinates37°08′24″N 76°19′39″W / 37.14000°N 76.32750°W / 37.14000; -76.32750Area3,501 acres (14.17 km2)Established1972Governing bodyU.S. Fish and Wildlife Servic...

Asosiasi Sepak Bola MaltaUEFADidirikan1900Bergabung dengan FIFA1959Bergabung dengan UEFA1960PresidenNorman Darmanin DemajoWebsitehttp://www.mfa.com.mt Asosiasi Sepak Bola Malta (bahasa Inggris: Malta Football Association) adalah badan pengendali sepak bola di Malta. Badan ini mengorganisasi Liga Utama Malta, Piala Malta dan tim nasional sepak bola Malta. Pranala luar Situs web resmi Malta pada situs web resmi FIFA. Malta pada situs web resmi Uni Sepak Bola Eropa maltafootball.com lbsAsosi...

Bangladeshi litterateur and cultural activist ProfessorShahed Aliশাহেদ আলীBorn(1925-05-24)24 May 1925Mahmudpur, Sunamganj, Sylhet District, British RajDied7 November 2001(2001-11-07) (aged 76)NationalityBangladeshiEducationJubilee High School (1943)Murari Chand College (1947)University of Dhaka (M.A. 1950)Occupation(s)Journalist, activist, Islamic thinkerSpouseCheman AraChildrenThree sons and three daughters,[citation needed] including Dilruba Z. Ara[1]Awa...

Private medical institution in Chennai, India Sri Ramachandra Institute of Higher Education and ResearchSRIHER on a 2020 stamp of IndiaMottoHigher Values in Higher EducationTypePrivateEstablished1985FounderN. P. V. Ramasamy UdayarAccreditationNAAC A++ChancellorV. R. VenkataachalamUndergraduates5138[1]Postgraduates1475[1]LocationPorur, Chennai, Tamil Nadu, India13°02′22″N 80°08′34″E / 13.0395°N 80.1427°E / 13.0395; 80.1427Websitesriramachandr...

Ottoman historian, jurist and poet (1469–1534) al-Mu'allim al-Awwal (The First Teacher)[1]Ibn KemalPersonalBornŞemseddin Ahmed1468Edirne, Rumelia, Ottoman EmpireDied14 April 1536(1536-04-14) (aged 67–68)Istanbul, Ottoman EmpireReligionIslamEra15th-centuryDenominationSunniJurisprudenceHanafiCreedMaturidi[2]Main interest(s)Aqidah, Tafsir, Tasawwuf, Hadith, Fiqh, Usul, Ma'aani, Mantiq, Falsafa, Ottoman historyNotable work(s)Tevarih-i Al-i Osman (The Chronicles of the Ho...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kalabod Madrasah – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove t...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Grundig Business Systems – news · newspapers · books · scholar · JSTOR (September 2009) (Learn how and when to remove this template message) Grundig Business SystemsTypeGmbHIndustryOffice equipmentFounded2001HeadquartersBayreuth, Nuremberg, GermanyKey peopleRol...

Kristus, den rätte Herren OriginalspråkTyskaTextförfattareElisabet CrucigerPublicerad1524 Kristus, den rätte Herren (på tyska Herr Christ, der enig Gotts Sohn) är en kristen psalm av Elisabet Cruciger, troligen från år 1524. Psalmen översattes troligen av Olaus Petri 1526 med titelraden Christus then rätte Herren. Johan Åström bearbetade psalmen 1816 och gav den titelraden Förlossningen är vunnen. En engelsk översättning gjordes av Arthur T Russell och gavs ut 1851. Sedan 1986...

Questa voce o sezione deve essere rivista e aggiornata appena possibile. Sembra infatti che questa voce contenga informazioni superate e/o obsolete. Se puoi, contribuisci ad aggiornarla. FIBA Asia Under-18 ChampionshipSport Pallacanestro FederazioneFIBA Asia ContinenteAsia OrganizzatoreFIBA Asia TitoloCampione d'Asia Under-18 CadenzaBiennale Partecipanti16 StoriaFondazione1970 Detentore Cina Record vittorie Cina (11) Modifica dati su Wikidata · Manuale I Campionati asiatici maschili di ...

HamiltonHamiltons beliggenhed i Skotland For alternative betydninger, se Hamilton. (Se også artikler, som begynder med Hamilton) Hamilton er en by i det sydlige Skotland, med et indbyggertal på cirka 49.000. Byen ligger i countyet South Lanarkshire, ca. 20 kilometer sydøst for Glasgow, og ved bredden af floden Clyde. Kirke i Hamilton 55°46′N 4°4′V / 55.767°N 4.067°V / 55.767; -4.067 SpireDenne artikel om Skotlands geografi er en spire som bør udbygges. Du e...

Nederlandsche Handel-Maatschappij N.V.Tulisan Nederlandsche Handel-Maatschappij di pintu masuk Arsip Amsterdam di gedung De Bazel, didirikan sebagai kantor pusat NHMJenisNaamloze vennootschapIndustriPerdagangan internasionalNasib Digabungkan ke dalam Algemene Bank Nederland, kini ABN AMRO Usaha di Indonesia menjadi Bank Ekspor Impor Indonesia, sekarang Bank Mandiri Didirikan29 Maret 1824; 200 tahun lalu (1824-03-29)PendiriRaja Willem IDitutup03 Oktober 1964 (1964-10-03)Kantorpu...

Type of design principles for human habitats Not to be confused with Archaeology. Concept design for the NOAH (New Orleans Arcology Habitat) proposal, designed by E. Kevin Schopfer[1] Part of a series onSustainable energy Energy conservation Arcology Building insulation Cogeneration Eco hotel Efficient energy use Energy storage Environmental planning Environmental technology Fossil fuel phase-out Green building Green building and wood Heat pump List of low-energy building techniques L...

Chow Yun-fat Født18. mai 1955[1][2][3][4] (69 år)Hongkong[5]BeskjeftigelseSkuespiller, manusforfatter, filmskuespiller, sanger, modell, fjernsynsskuespiller Utdannet vedLiu Po Shan Memorial CollegeEktefelleCandice Yu (1983–1984)Jasmine Tan (1986–)Partner(e)Idy ChanNasjonalitetKinaHongkongUtmerkelserSilver Bauhinia Star (2003)Gullhesten for beste mannlige hovedrolle (1985) (for: Hong Kong 1941)[6]Gullhesten for beste mannlige hovedroll...