Bioluminescent bacteria

Bioluminescent plate

Bioluminescent bacteria are light-producing bacteria that are predominantly present in sea water, marine sediments, the surface of decomposing fish and in the gut of marine animals. While not as common, bacterial bioluminescence is also found in terrestrial and freshwater bacteria.[1] These bacteria[clarification needed] may be free living (such as Vibrio harveyi) or in symbiosis with animals such as the Hawaiian Bobtail squid (Aliivibrio fischeri) or terrestrial nematodes (Photorhabdus luminescens). The host organisms provide these bacteria[clarification needed] a safe home and sufficient nutrition. In exchange, the hosts use the light produced by the bacteria for camouflage, prey and/or mate attraction. Bioluminescent bacteria have evolved symbiotic relationships with other organisms in which both participants benefit each other equally.[2] Bacteria also use luminescence reaction for quorum sensing, an ability to regulate gene expression in response to bacterial cell density.[3]

History

Records of bioluminescence due to bacteria have existed for thousands of years.[4] They appear in the folklore of many regions, including Scandinavia and the Indian subcontinent. Both Aristotle and Charles Darwin have described the phenomenon of the glowing oceans which is most likely due to these light-producing organisms.[4] Since its discovery less than 30 years ago, the enzyme luciferase and its regulatory gene, lux, have led to major advances in molecular biology, through its use as a reporter gene.[5] Luciferase was first purified by McElroy and Green in 1955.[6] It was later discovered that there were two subunits to luciferase, called subunits α and β. The genes encoding these enzymes, luxA and luxB, respectively, were first isolated in the lux operon of Aliivibrio fisheri[4].

Purpose of bio-luminescence

The wide-ranged biological purposes of bio-luminescence include but are not limited to attraction of mates,[7] defense against predators, and warning signals. In the case of bioluminescent bacteria, bio-luminescence mainly serves as a form of dispersal. It has been hypothesized that enteric bacteria (bacteria that survive in the guts of other organisms) - especially those prevalent in the depths of the ocean - employ bio-luminescence as an effective form of distribution.[8] After making their way into the digestive tracts of fish and other marine organisms and being excreted in fecal pellets, bioluminescent bacteria are able to utilize their bio-luminescent capabilities to lure in other organisms and prompt ingestion of these bacterial-containing fecal pellets.[9] The bio-luminescence of bacteria thereby ensures their survival, persistence, and dispersal as they are able to enter and inhabit other organisms.

Regulation of bio-luminescence

The regulation of bio-luminescence in bacteria is achieved through the regulation of the oxidative enzyme called luciferase. It is important that bio-luminescent bacteria decrease production rates of luciferase when the population is sparse in number in order to conserve energy. Thus, bacterial bioluminescence is regulated by means of chemical communication referred to as quorum sensing.[10] Essentially, certain signaling molecules named autoinducers[11] with specific bacterial receptors become activated when the population density of bacteria is high enough. The activation of these receptors leads to a coordinated induction of luciferase production that ultimately yields visible luminescence.[12]

Biochemistry of bio-luminescence

Bacterial luciferase consists of two subunits, depicted by the red and blue regions.

The chemical reaction that is responsible for bio-luminescence is catalyzed by the enzyme luciferase. In the presence of oxygen, luciferase catalyzes the oxidation of an organic molecule called luciferin.[13] Though bio-luminescence across a diverse range of organisms such as bacteria, insects, and dinoflagellates function in this general manner (utilizing luciferase and luciferin), there are different types of luciferin-luciferase systems. For bacterial bio-luminescence specifically, the biochemical reaction involves the oxidation of an aliphatic aldehyde by a reduced flavin mononucleotide.[14] The products of this oxidation reaction include an oxidized flavin mononucleotide, a fatty acid chain, and energy in the form of a blue-green visible light.[15]

Reaction: FMNH2 + O2 + RCHO → FMN + RCOOH + H2O + light

Evolution of bio-luminescence

Of all light emitters in the ocean, bio-luminescent bacteria is the most abundant and diverse. However, the distribution of bio-luminescent bacteria is uneven, which suggests evolutionary adaptations. The bacterial species in terrestrial genera such as Photorhabdus are bio-luminescent. On the other hand, marine genera with bio-luminescent species such as Vibrio and Shewanella oneidensis have different closely related species that are not light emitters.[16] Nevertheless, all bio-luminescent bacteria share a common gene sequence: the enzymatic oxidation of Aldehyde and reduced Flavin mononucleotide by luciferase which are contained in the lux operon.[17] Bacteria from distinct ecological niches contain this gene sequence; therefore, the identical gene sequence evidently suggests that bio-luminescence bacteria result from evolutionary adaptations.

Use as laboratory tool

After the discovery of the lux operon, the use of bioluminescent bacteria as a laboratory tool is claimed to have revolutionized the area of environmental microbiology.[4] The applications of bioluminescent bacteria include biosensors for detection of contaminants, measurement of pollutant toxicity [4][18][19] and monitoring of genetically engineered bacteria released into the environment.[20][21][22] Biosensors, created by placing a lux gene construct under the control of an inducible promoter, can be used to determine the concentration of specific pollutants.[4] Biosensors are also able to distinguish between pollutants that are bioavailable and those that are inert and unavailable.[4] For example, Pseudomonas fluorescens has been genetically engineered to be capable of degrading salicylate and naphthalene, and is used as a biosensor to assess the bioavailability of salicylate and naphthalene.[4] Biosensors can also be used as an indicator of cellular metabolic activity and to detect the presence of pathogens.[4]

Evolution

The light-producing chemistry behind bioluminescence varies across the lineages of bioluminescent organisms.[16] Based on this observation, bioluminescence is believed to have evolved independently at least 40 times.[16] In bioluminescent bacteria, the reclassification of the members ofVibrio fischeri species group as a new genus, Aliivibrio, has led to increased interest in the evolutionary origins of bioluminescence[16]. Among bacteria, the distribution of bioluminescent species is polyphyletic. For instance, while all species in the terrestrial genus Photorhabdus are luminescent, the genera Aliivibrio, Photobacterium, Shewanella and Vibrio contain both luminous and non-luminous species.[16] Despite bioluminescence in bacteria not sharing a common origin, they all share a gene sequence in common. The appearance of the highly conserved lux operon in bacteria from very different ecological niches suggests a strong selective advantage despite the high energetic costs of producing light. DNA repair is thought to be the initial selective advantage for light production in bacteria.[16] Consequently, the lux operon may have been lost in bacteria that evolved more efficient DNA repair systems but retained in those where visible light became a selective advantage.[16][23] The evolution of quorum sensing is believed to have afforded further selective advantage for light production. Quorum sensing allows bacteria to conserve energy by ensuring that they do not synthesize light-producing chemicals unless a sufficient concentration are present to be visible.[16]

Bacterial groups that exhibit bioluminescence

All bacterial species that have been reported to possess bioluminescence belong within the families Vibrionaceae, Shewanellaceae, or Enterobacteriaceae, all of which are assigned to the class Gammaproteobacteria.[24]

Family Genus Species
Enterobacteriaceae Photorhabdus Photorhabdus asymbiotica

Photorhabdus luminescens

Photorhabdus temperata

Shewanellaceae Shewanella Shewanella woodyi

Shewanella hanedai

Vibrionaceae Aliivibrio Aliivibrio fischeri

Aliivibrio logei

Aliivibrio salmonicida

Aliivibrio sifiae

Aliivibrio "thorii"

Aliivibrio wodanis

Photobacterium Photobacterium aquimaris

Photobacterium damselae

Photobacterium kishitanii

Photobacterium leiognathi

Photobacterium mandapamensis

Photobacterium phosphoreum

Vibrio Vibrio azureus

Vibrio "beijerinckii"

Vibrio campbellii

Vibrio chagasii

Vibrio cholerae

Vibrio harveyi

Vibrio mediterranei

Vibrio orientalis

Vibrio sagamiensis

Vibrio splendidus

Vibrio vulnificus

"Candidatus Photodesmus" "Candidatus Photodesmus katoptron"

(List from Dunlap and Henryk (2013), "Luminous Bacteria", The Prokaryotes [24])

Distribution

Bioluminescent bacteria are most abundant in marine environments during spring blooms when there are high nutrient concentrations. These light-emitting organisms are found mainly in coastal waters near the outflow of rivers, such as the northern Adriatic Sea, Gulf of Trieste, northwestern part of the Caspian Sea, coast of Africa and many more.[25] These are known as milky seas. Bioluminescent bacteria are also found in freshwater and terrestrial environments but are less wide spread than in seawater environments. They are found globally, as free-living, symbiotic or parasitic forms [1] and possibly as opportunistic pathogens.[24] Factors that affect the distribution of bioluminescent bacteria include temperature, salinity, nutrient concentration, pH level and solar radiation.[26] For example, Aliivibrio fischeri grows favourably in environments that have temperatures between 5 and 30 °C and a pH that is less than 6.8; whereas, Photobacterium phosphoreum thrives in conditions that have temperatures between 5 and 25 °C and a pH that is less than 7.0.[27]

Genetic diversity

All bioluminescent bacteria share a common gene sequence: the lux operon characterized by the luxCDABE gene organization.[24] LuxAB codes for luciferase while luxCDE codes for a fatty-acid reductase complex that is responsible for synthesizing aldehydes for the bioluminescent reaction. Despite this common gene organization, variations, such as the presence of other lux genes, can be observed among species. Based on similarities in gene content and organization, the lux operon can be organized into the following four distinct types: the Aliivibrio/Shewanella type, the Photobacterium type, theVibrio/Candidatus Photodesmus type, and the Photorhabdus type. While this organization follows the genera classification level for members of Vibrionaceae (Aliivibrio, Photobacterium, and Vibrio), its evolutionary history is not known.[24]

With the exception of the Photorhabdus operon type, all variants of the lux operon contain the flavin reductase-encoding luxG gene.[24] Most of the Aliivibrio/Shewanella type operons contain additional luxI/luxR regulatory genes that are used for autoinduction during quorum sensing.[28] The Photobacterum operon type is characterized by the presence of rib genes that code for riboflavin, and forms the lux-rib operon. TheVibrio/Candidatus Photodesmus operon type differs from both the Aliivibrio/Shewanella and the Photobacterium operon types in that the operon has no regulatory genes directly associated with it.[24]

Mechanism

All bacterial luciferases are approximately 80 KDa heterodimers containing two subunits: α and β. The α subunit is responsible for light emission.[4] The luxA and luxB genes encode for the α and β subunits, respectively. In most bioluminescent bacteria, the luxA and luxB genes are flanked upstream by luxC and luxD and downstream by luxE.[4]

The bioluminescent reaction is as follows:

FMNH2 + O2 + R-CHO -> FMN + H2O + R-COOH + Light (~ 495 nm)

Molecular oxygen reacts with FMNH2 (reduced flavin mononucleotide) and a long-chain aldehyde to produce FMN (flavin mononucleotide), water and a corresponding fatty acid. The blue-green light emission of bioluminescence, such as that produced by Photobacterium phosphoreum and Vibro harveyi, results from this reaction.[4] Because light emission involves expending six ATP molecules for each photon, it is an energetically expensive process. For this reason, light emission is not constitutively expressed in bioluminescent bacteria; it is expressed only when physiologically necessary.

Quorum sensing

Bacterial quorum sensing

Bioluminescence in bacteria can be regulated through a phenomenon known as autoinduction or quorum sensing.[4] Quorum sensing is a form of cell-to-cell communication that alters gene expression in response to cell density. Autoinducer is a diffusible pheromone produced constitutively by bioluminescent bacteria and serves as an extracellular signalling molecule.[4] When the concentration of autoinducer secreted by bioluminescent cells in the environment reaches a threshold (above 107 cells per mL), it induces the expression of luciferase and other enzymes involved in bioluminescence.[4] Bacteria are able to estimate their density by sensing the level of autoinducer in the environment and regulate their bioluminescence such that it is expressed only when there is a sufficiently high cell population. A sufficiently high cell population ensures that the bioluminescence produced by the cells will be visible in the environment.

A well known example of quorum sensing is that which occurs between Aliivibrio fischeri and its host. This process is regulated by LuxI and LuxR, encoded by luxI and luxR respectively. LuxI is autoinducer synthase that produces autoinducer (AI) while LuxR functions as both a receptor and transcription factor for the lux operon.[4] When LuxR binds AI, LuxR-AI complex activates transcription of the lux operon and induces the expression of luciferase.[28] Using this system, A. fischeri has shown that bioluminescence is expressed only when the bacteria are host-associated and have reached sufficient cell densities.[29]

Another example of quorum sensing by bioluminescent bacteria is by Vibrio harveyi, which are known to be free-living. Unlike Aliivibrio fischeri, V. harveyi do not possess the luxI/luxR regulatory genes and therefore have a different mechanism of quorum sensing regulation. Instead, they use the system known as three-channel quorum sensing system.[30] Vibrio use small non-coding RNAs called Qrr RNAs to regulate quorum sensing, using them to control translation of energy-costly molecules.

Role

The uses of bioluminescence and its biological and ecological significance for animals, including host organisms for bacteria symbiosis, have been widely studied. The biological role and evolutionary history for specifically bioluminescent bacteria still remains quite mysterious and unclear.[4][31] However, there are continually new studies being done to determine the impacts that bacterial bioluminescence can have on our constantly changing environment and society. Aside from the many scientific and medical uses, scientists have also recently begun to come together with artists and designers to explore new ways of incorporating bioluminescent bacteria, as well as bioluminescent plants, into urban light sources to reduce the need for electricity.[32] They have also begun to use bioluminescent bacteria as a form of art and urban design for the wonder and enjoyment of human society.[33][34][35]

One explanation for the role of bacterial bioluminescence is from the biochemical aspect. Several studies have shown the biochemical roles of the luminescence pathway. It can function as an alternate pathway for electron flow under low oxygen concentration, which can be advantageous when no fermentable substrate is available.[1] In this process, light emission is a side product of the metabolism.

Evidence also suggests that bacterial luciferase contributes to the resistance of oxidative stress. In laboratory culture, luxA and luxB mutants of Vibrio harveyi, which lacked luciferase activity, showed impairment of growth under high oxidative stress compared to wild type. The luxD mutants, which had an unaffected luciferase but were unable to produce luminescence, showed little or no difference. This suggests that luciferase mediates the detoxification of reactive oxygen.[36]

Bacterial bioluminescence has also been proposed to be a source of internal light in photoreactivation, a DNA repair process carried out by photolyase.[37] Experiments have shown that non-luminescent V. harveyi mutants are more sensitive to UV irradiation, suggesting the existence of a bioluminescent-mediated DNA repair system.[23]

Another hypothesis, called the "bait hypothesis", is that bacterial bioluminescence attracts predators who will assist in their dispersal.[37] They are either directly ingested by fish or indirectly ingested by zooplankton that will eventually be consumed by higher trophic levels. Ultimately, this may allow passage into the fish gut, a nutrient-rich environment where the bacteria can divide, be excreted, and continue their cycle. Experiments using luminescent Photobacterium leiognathi and non-luminescent mutants have shown that luminescence attracts zooplankton and fish, thus supporting this hypothesis.[37]

Symbiosis with other organisms

The symbiotic relationship between the Hawaiian bobtail squid Euprymna scolopes and the marine gram-negative bacterium Aliivibrio fischeri has been well studied. The two organisms exhibit a mutualistic relationship in which bioluminescence produced by A. fischeri helps to attract prey to the squid host, which provides nutrient-rich tissues and a protected environment forA. fischeri.[38] Bioluminescence provided by A. fischeri also aids in the defense of the squid E. scolopes by providing camouflage during its nighttime foraging activity.[39] Following bacterial colonization, the specialized organs of the squid undergo developmental changes and a relationship becomes established. The squid expels 90% of the bacterial population each morning, because it no longer needs to produce bioluminescence in the daylight.[4] This expulsion benefits the bacteria by aiding in their dissemination. A single expulsion by one bobtail squid produces enough bacterial symbionts to fill 10,000m3 of seawater at a concentration that is comparable to what is found in coastal waters.[39] Thus, in at least some habitats, the symbiotic relationship between A. fischeri and E. scolopes plays a key role in determining the abundance and distribution of E. scolopes. There is a higher abundance of A. fischeri in the vicinity of a population of E. scolopes and this abundance markedly decreases with increasing distance from the host's habitat.[39]

Bioluminescent Photobacterium species also engage in mutually beneficial associations with fish and squid.[40] Dense populations of P. kishitanii, P. leiogathi, and P. mandapamensis can live in the light organs of marine fish and squid, and are provided with nutrients and oxygen for reproduction[40] in return for providing bioluminescence to their hosts, which can aid in sex-specific signaling, predator avoidance, locating or attracting prey, and schooling.[citation needed] Interestingly, Meyer-Rochow reported in 1976 that if the fish cannot obtain food and is starving, the light of its bioluminescent symbiont becomes increasingly dim until the light emission stops altogether.[41]

Table of luminous bacterial species in light organ symbiosis with fish and squid
In the table below, the images at the right indicate in blue the locations of the light organ of different families of symbiotically luminous fish and squid.[42] E indicates an external expulsion of the bioluminescent bacteria directly into the seawater. I indicates an internal expulsion of the bioluminescent bacteria in the digestive tract. (E) or (I) indicate a putative localization of the expulsion.[43]

See also

References

  1. ^ a b c Nealson, K. H.; Hastings, J. W. (1979-12-01). "Bacterial bioluminescence: its control and ecological significance". Microbiological Reviews. 43 (4): 496–518. doi:10.1128/mmbr.43.4.496-518.1979. ISSN 0146-0749. PMC 281490. PMID 396467.
  2. ^ McFall-Ngai, Margaret; Heath-Heckman, Elizabeth A.C.; Gillette, Amani A.; Peyer, Suzanne M.; Harvie, Elizabeth A. (2012). "The secret languages of coevolved symbioses: Insights from the Euprymna scolopes–Vibrio fischeri symbiosis". Seminars in Immunology. 24 (1): 3–8. doi:10.1016/j.smim.2011.11.006. PMC 3288948. PMID 22154556.
  3. ^ Waters, Christopher M.; Bassler, Bonnie L. (2005-10-07). "QUORUM SENSING: Cell-to-Cell Communication in Bacteria". Annual Review of Cell and Developmental Biology. 21 (1): 319–346. doi:10.1146/annurev.cellbio.21.012704.131001. PMID 16212498.
  4. ^ a b c d e f g h i j k l m n o p q r Nunes-Halldorson, Vânia da Silva; Duran, Norma Letícia (2003-06-01). "Bioluminescent bacteria: lux genes as environmental biosensors". Brazilian Journal of Microbiology. 34 (2): 91–96. doi:10.1590/S1517-83822003000200001. ISSN 1517-8382.
  5. ^ "Luciferase Reporters". www.thermofisher.com. Retrieved 2017-03-24.
  6. ^ McElroy, W.D.; Green (1954). "Enzymatic properties of bacterial luciferase". Archives of Biochemistry and Biophysics. 56 (1): 240–255. doi:10.1016/0003-9861(55)90353-2. PMID 14377570.
  7. ^ Herring, Peter J. (2007-08-01). "REVIEW. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea". Journal of the Marine Biological Association of the United Kingdom. 87 (4): 829–842. Bibcode:2007JMBUK..87..829H. doi:10.1017/S0025315407056433. ISSN 1469-7769. S2CID 86616254.
  8. ^ Ruby, E. G.; Morin, J. G. (1979-09-01). "Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion". Applied and Environmental Microbiology. 38 (3): 406–411. Bibcode:1979ApEnM..38..406R. doi:10.1128/AEM.38.3.406-411.1979. ISSN 0099-2240. PMC 243508. PMID 16345429.
  9. ^ Ruby, E. G.; Morin, J. G. (1979-09-01). "Luminous Enteric Bacteria of Marine Fishes: a Study of Their Distribution, Densities, and Dispersion". Applied and Environmental Microbiology. 38 (3): 406–411. Bibcode:1979ApEnM..38..406R. doi:10.1128/AEM.38.3.406-411.1979. ISSN 0099-2240. PMC 243508. PMID 16345429.
  10. ^ Wilson, Thérèse; Hastings, J. Woodland (2003-11-28). "BIOLUMINESCENCE". Annual Review of Cell and Developmental Biology. 14 (1): 197–230. doi:10.1146/annurev.cellbio.14.1.197. PMID 9891783.
  11. ^ Eberhard, A.; Burlingame, A. L.; Eberhard, C.; Kenyon, G. L.; Nealson, K. H.; Oppenheimer, N. J. (1981-04-01). "Structural identification of autoinducer of Photobacterium fischeri luciferase". Biochemistry. 20 (9): 2444–2449. doi:10.1021/bi00512a013. ISSN 0006-2960. PMID 7236614.
  12. ^ Pérez-Velázquez, Judith; Gölgeli, Meltem; García-Contreras, Rodolfo (2016-08-25). "Mathematical Modelling of Bacterial Quorum Sensing: A Review" (PDF). Bulletin of Mathematical Biology. 78 (8): 1585–1639. doi:10.1007/s11538-016-0160-6. hdl:11693/36891. ISSN 0092-8240. PMID 27561265. S2CID 3940300.
  13. ^ Kaskova, Zinaida M.; Tsarkova, Aleksandra S.; Yampolsky, Ilia V. (2016-10-24). "1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine". Chem. Soc. Rev. 45 (21): 6048–6077. doi:10.1039/c6cs00296j. ISSN 1460-4744. PMID 27711774.
  14. ^ Wiles, Siouxsie; Ferguson, Kathryn; Stefanidou, Martha; Young, Douglas B.; Robertson, Brian D. (2005-07-01). "Alternative Luciferase for Monitoring Bacterial Cells under Adverse Conditions". Applied and Environmental Microbiology. 71 (7): 3427–3432. Bibcode:2005ApEnM..71.3427W. doi:10.1128/AEM.71.7.3427-3432.2005. ISSN 0099-2240. PMC 1169068. PMID 16000745.
  15. ^ Fisher, Andrew J.; Thompson, Thomas B.; Thoden, James B.; Baldwin, Thomas O.; Rayment, Ivan (1996-09-06). "The 1.5-Å Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions". Journal of Biological Chemistry. 271 (36): 21956–21968. doi:10.1074/jbc.271.36.21956. ISSN 0021-9258. PMID 8703001.
  16. ^ a b c d e f g h Widder, E. A. (2010-05-07). "Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity". Science. 328 (5979): 704–708. Bibcode:2010Sci...328..704W. doi:10.1126/science.1174269. ISSN 0036-8075. PMID 20448176. S2CID 2375135.
  17. ^ O'Kane, Dennis J.; Prasher, Douglas C. (1992-02-01). "Evolutionary origins of bacterial bioluminescence". Molecular Microbiology. 6 (4): 443–449. doi:10.1111/j.1365-2958.1992.tb01488.x. ISSN 1365-2958. PMID 1560772. S2CID 42286135.
  18. ^ Ptitsyn, L. R.; Horneck, G.; Komova, O.; Kozubek, S.; Krasavin, E. A.; Bonev, M.; Rettberg, P. (1997-11-01). "A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells". Applied and Environmental Microbiology. 63 (11): 4377–4384. Bibcode:1997ApEnM..63.4377P. doi:10.1128/AEM.63.11.4377-4384.1997. ISSN 0099-2240. PMC 168758. PMID 9361425.
  19. ^ Widder, Edith A.; Falls, Beth (March 2014). "Review of Bioluminescence for Engineers and Scientists in Biophotonics". IEEE Journal of Selected Topics in Quantum Electronics. 20 (2): 232–241. Bibcode:2014IJSTQ..20..232W. doi:10.1109/JSTQE.2013.2284434. ISSN 1077-260X. S2CID 33866877.
  20. ^ Mahaffee, W. F.; Bauske, E. M.; van Vuurde, J. W.; van der Wolf, J. M.; van den Brink, M.; Kloepper, J. W. (1997-04-01). "Comparative analysis of antibiotic resistance, immunofluorescent colony staining, and a transgenic marker (bioluminescence) for monitoring the environmental fate of rhizobacterium". Applied and Environmental Microbiology. 63 (4): 1617–1622. Bibcode:1997ApEnM..63.1617M. doi:10.1128/AEM.63.4.1617-1622.1997. ISSN 0099-2240. PMC 168454. PMID 9097457.
  21. ^ Shaw, J. J.; Dane, F.; Geiger, D.; Kloepper, J. W. (1992-01-01). "Use of bioluminescence for detection of genetically engineered microorganisms released into the environment". Applied and Environmental Microbiology. 58 (1): 267–273. Bibcode:1992ApEnM..58..267S. doi:10.1128/AEM.58.1.267-273.1992. ISSN 0099-2240. PMC 195202. PMID 1311542.
  22. ^ Flemming, C. A.; Lee, H.; Trevors, J. T. (1994-09-01). "Bioluminescent Most-Probable-Number Method To Enumerate lux-Marked Pseudomonas aeruginosa UG2Lr in Soil". Applied and Environmental Microbiology. 60 (9): 3458–3461. Bibcode:1994ApEnM..60.3458F. doi:10.1128/AEM.60.9.3458-3461.1994. ISSN 0099-2240. PMC 201832. PMID 16349396.
  23. ^ a b Czyz, A.; Wróbel, B.; Wegrzyn, G. (2000-02-01). "Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair". Microbiology. 146 (2): 283–288. doi:10.1099/00221287-146-2-283. ISSN 1350-0872. PMID 10708366.
  24. ^ a b c d e f g Delong, Edward F.; Stackebrandt, Erko; Lory, Stephen; Thompson, Fabiano (2013). The Prokaryotes - Springer. doi:10.1007/978-3-642-31331-8. ISBN 978-3-642-31330-1. S2CID 5215416.
  25. ^ Staples, Robert F.; States., United (1966). Details - The distribution and characteristics of surface bioluminescence in the oceans / Robert F. Staples. - Biodiversity Heritage Library. doi:10.5962/bhl.title.46935.
  26. ^ Soto, W.; Gutierrez, J.; Remmenga, M. D.; Nishiguchi, M. K. (2009-01-01). "Salinity and Temperature Effects on Physiological Responses of Vibrio fischeri from Diverse Ecological Niches". Microbial Ecology. 57 (1): 140–150. Bibcode:2009MicEc..57..140S. doi:10.1007/s00248-008-9412-9. ISSN 0095-3628. PMC 2703662. PMID 18587609.
  27. ^ Waters, Paul; Lloyd, David (1985). "Salt, pH and temperature dependencies of growth and bioluminescence of three species of luminous bacteria analysed on gradient plates". Journal of General Microbiology. 131 (11): 65–9. doi:10.1099/00221287-131-11-2865.
  28. ^ a b Bassler, B. L. (1999-12-01). "How bacteria talk to each other: regulation of gene expression by quorum sensing". Current Opinion in Microbiology. 2 (6): 582–587. doi:10.1016/s1369-5274(99)00025-9. ISSN 1369-5274. PMID 10607620.
  29. ^ Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. (1994-01-01). "Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators". Journal of Bacteriology. 176 (2): 269–275. doi:10.1128/jb.176.2.269-275.1994. ISSN 0021-9193. PMC 205046. PMID 8288518.
  30. ^ Defoirdt, Tom; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter (2008-01-01). "Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work". The ISME Journal. 2 (1): 19–26. Bibcode:2008ISMEJ...2...19D. doi:10.1038/ismej.2007.92. ISSN 1751-7362. PMID 18180744.
  31. ^ Vannier, Thomas; Hingamp, Pascal; Turrel, Floriane; Tanet, Lisa; Lescot, Magali; Timsit, Youri (2020-06-01). "Diversity and evolution of bacterial bioluminescence genes in the global ocean". NAR Genomics and Bioinformatics. 2 (2): lqaa018. doi:10.1093/nargab/lqaa018. PMC 7671414. PMID 33575578.
  32. ^ Ardavani, Olympia; Zerefos, Stelios; Doulos, Lambros T. (2020-01-01). "Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments". Journal of Cleaner Production. 242: 118477. Bibcode:2020JCPro.24218477A. doi:10.1016/j.jclepro.2019.118477. ISSN 0959-6526.
  33. ^ Latz, Michael I. (2019). "The Making of Infinity Cube, a Bioluminescence Art Exhibit". Limnology and Oceanography Bulletin. 28 (4): 130–134. Bibcode:2019LimOB..28..130L. doi:10.1002/lob.10345. ISSN 1539-6088.
  34. ^ DYBAS, CHERYL LYN (2019). "A New Wave SCIENCE AND ART MEET IN THE SEA". Oceanography. 32 (1): 10–12. ISSN 1042-8275. JSTOR 26604937.
  35. ^ Foth, Marcus; Caldwell, Glenda Amayo (2018). "More-than-Human Media Architecture" (PDF). Proceedings of the 4th Media Architecture Biennale Conference. pp. 66–75. doi:10.1145/3284389.3284495. ISBN 978-1-4503-6478-2. S2CID 69160272.
  36. ^ Szpilewska, Hanna; Czyz, Agata; Wegrzyn, Grzegorz (2003-11-01). "Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress". Current Microbiology. 47 (5): 379–382. doi:10.1007/s00284-002-4024-y. ISSN 0343-8651. PMID 14669913. S2CID 20132449.
  37. ^ a b c Zarubin, Margarita; Belkin, Shimshon; Ionescu, Michael; Genin, Amatzia (2012-01-17). "Bacterial bioluminescence as a lure for marine zooplankton and fish". Proceedings of the National Academy of Sciences of the United States of America. 109 (3): 853–857. Bibcode:2012PNAS..109..853Z. doi:10.1073/pnas.1116683109. ISSN 1091-6490. PMC 3271926. PMID 22203999.
  38. ^ Naughton, Lynn M.; Mandel, Mark J. (2012-03-01). "Colonization of Euprymna scolopes Squid by Vibrio fischeri". Journal of Visualized Experiments (61): e3758. doi:10.3791/3758. ISSN 1940-087X. PMC 3399469. PMID 22414870.
  39. ^ a b c Ruby, E. G.; Lee, K. H. (1998-03-01). "The Vibrio fischeri-Euprymna scolopes Light Organ Association: Current Ecological Paradigms". Applied and Environmental Microbiology. 64 (3): 805–812. Bibcode:1998ApEnM..64..805R. doi:10.1128/AEM.64.3.805-812.1998. ISSN 0099-2240. PMC 106330. PMID 16349524.
  40. ^ a b Urbanczyk, Henryk; Ast, Jennifer C.; Dunlap, Paul V. (2011-03-01). "Phylogeny, genomics, and symbiosis of Photobacterium". FEMS Microbiology Reviews. 35 (2): 324–342. doi:10.1111/j.1574-6976.2010.00250.x. ISSN 0168-6445. PMID 20883503.
  41. ^ Meyer-Rochow, Victor Benno (1976). "Loss of bioluminescence in Anomalops katoptron due to starvation". Experientia. 32 (9): 1175–1176. doi:10.1007/BF01927610.
  42. ^ Nealson, K. H. and Hastings, J. W. (1979) "Bacterial bioluminescence: its control and ecological significance", Microbiol. Rev., 43: 496–518. doi:10.1128/MMBR.43.4.496-518.1979.
  43. ^ Tanet, Lisa; Martini, Séverine; Casalot, Laurie; Tamburini, Christian (2020). "Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump". Biogeosciences. 17 (14): 3757–3778. Bibcode:2020BGeo...17.3757T. doi:10.5194/bg-17-3757-2020. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.

Further reading

Read other articles:

Biji bersayap pada Dipterocarpus sp. Biji bersayap pada Hopea sp. Biji bersayap pada Pterocymbium tinctorium Tumbuhan Anemokori adalah tumbuhan yang bijinya tersebar menggunakan perantara angin. Biji pada tumbuhan ini memiliki sayap atau bulu hasil modifikasi struktur kulit biji, kulit buah kering atau bagian mahkota bunga yang mengering.[1] Nama ilmiah Genus Nama lokal Acer laurinum Hassk. Sapindaceae Hulu kapas, madang alu, walik sana, huru kembang, maple Alstonia pneumatophora Back...

 

 

هذا التصنيف مخصص لجمع مقالات البذور المتعلقة بصفحة موضوع عن فرقة موسيقية أوروبية. بإمكانك المساعدة في توسيع هذه المقالات وتطويرها. لإضافة مقالة إلى هذا التصنيف، استخدم {{بذرة فرقة موسيقية أوروبية}} بدلاً من {{بذرة}}. هذا التصنيف لا يظهر في صفحات أعضائه؛ حيث إنه مخصص لصيانة صف...

 

 

32°41′25.130″N 17°2′56.558″W / 32.69031389°N 17.04904389°W / 32.69031389; -17.04904389 أونياو دا ماديرا الاسم الكامل نادي أونياو لكرة القدم تأسس عام 1 نوفمبر 1913؛ منذ 110 سنين (1913-11-01) الملعب سنترو ديسبورتيفو دا ماديرا , فونشال , البرتغال(السعة: 2,495) البلد البرتغال  الدوري الدوري البرت�...

Questa voce o sezione sull'argomento isole d'Italia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. SpargiGeografia fisicaLocalizzazioneMar Tirreno Coordinate41°14′36″N 9°20′51″E / 41.243333°N 9.3475°E41.243333; 9.3475Coordinate: 41°14′36″N 9°20′51″E / 41.243333°N 9.3475°E41.243333; 9.3475 Arcipelag...

 

 

Questa voce o sezione sull'argomento attori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Valentina Cortese nel film Un americano in vacanza (1946) Valentina Elena Cortese Rossi di Coenzo (Milano, 1º gennaio 1923 – Milano, 10 luglio 2019) è stata un'attrice italiana, considerata una delle u...

 

 

Rafles de Limoges Données clés Date 27 août 194210 février 1943avril 1944mai 1944 Lieu Limoges Cause Solution finale de la Question juive Résultat 450 dont 68 enfants (27 août 1942) modifier Les Rafles de Limoges ont lieu à Limoges (Haute-Vienne) le 27 août 1942, le 10 février 1943, en avril 1944, et en mai 1944. Rafle du 27 août 1942 Une rafle a lieu le 27 août 1942 à Limoges. 450 Juifs étrangers, venus en France, après 1936[1], dont 68 enfants de la région de Limoges sont ar...

River in New York, United StatesOtsquago CreekRapids on the creek by VanhornesvilleLocation of the mouth of Otsquago CreekShow map of New York Adirondack ParkOtsquago Creek (the United States)Show map of the United StatesLocationCountryUnited StatesStateNew YorkRegionCentral New York RegionCountiesHerkimer, MontgomeryTownsStark, MindenPhysical characteristicsSourceUn-named Marshy Field • locationVan Hornesville, New York • coordinates42°54′27″N 74°50...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Branch of geometry Contact form redirects here. For web email forms, see Form (web) § Form-to-email scripts. The standard contact structure on R3. Each point in R3 has a plane associated to it by the contact structure, in this case as the kernel of the one-form dz − y dx. These planes appear to twist along the y-axis. It is not integrable, as can be verified by drawing an infinitesimal square in the x-y plane, and follow the path along the one-forms. The path would not return to the s...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Romance language This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Haketia – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) HaketiaHakitia, Haquitía, Western Judeo-SpanishAn original letter in Solitreo script from Tangier, written in 1832.Native toNor...

Cet article concerne le Loiret, en tant que collectivité territoriale. Pour le territoire du Loiret (division administrative), voir Loiret (département). Pour les autres significations, voir Loiret. Conseil départemental du Loiret Logotype du conseil départemental du Loiret Situation Pays France Région Centre-Val de Loire Département Loiret Siège Orléans Exécutif Président Marc Gaudet (UDI) Groupes politiques Union de la Droite28 / 42 Divers Gauche10 / 42 Eu...

 

 

Dutch reality television series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Holland's Next Top Model – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this message) Holland's Next Top ModelCreated byTyra BanksPresented byYfke Sturm (1–2)Daphne Deckers (3–5)Anouk S...

 

 

Компенсационный температурный шов в автодорожном мосту, используется для предотвращения повреждения дорожного полотна от теплового расширения Теплово́е расшире́ние (также используется термин «термическое расширение») — изменение линейных размеров и формы твёрдо...

يهودا   الاسم الرسمي (باللاتينية: Iudaea)‏    الإحداثيات 32°30′N 34°54′E / 32.5°N 34.9°E / 32.5; 34.9   تاريخ التأسيس 6  سبب التسمية يهودية  تقسيم إداري  البلد روما القديمة[1]  التقسيم الأعلى الإمبراطورية الرومانية  العاصمة قيسارية ماريتيما  تاريخ ال�...

 

 

1909 exposition in Seattle, Washington Alaska–Yukon–Pacific ExpositionExposition logoOverviewBIE-classUnrecognized expositionNameAlaska–Yukon–Pacific ExpositionVisitorsover 3,700,000LocationCitySeattleCoordinates47°39′14″N 122°18′28″W / 47.6537965°N 122.3077869°W / 47.6537965; -122.3077869TimelineOpeningJune 1, 1909ClosureOctober 16, 1909 Postcard of the Pay Streak Exposition flag The Alaska–Yukon–Pacific Exposition, acronym AYP or AYPE, was a w...

 

 

Keuskupan MondovìDioecesis Montis Regalis in Pedemonte o Montis ViciKatolik Langit-langit di Katedral MondovìLokasiNegaraItaliaProvinsi gerejawiTorinoStatistikLuas2.189 km2 (845 sq mi)Populasi- Total- Katolik(per 2013)127.800 (perkiraan)115,000 (perkiraan) (90.0%)Paroki192Imam117 (diosesan)7 (Ordo Relijius)17 Deakon PermanenInformasiDenominasiGereja KatolikRitusRitus RomaPendirian8 Juni 1388KatedralKatedral Mondovì (Cattedrale di San Donato)Kepemimpinan k...

  提示:此条目页的主题不是奧林匹克。   此條目介紹的是希臘的一座城市。关于國際中學生的比賽項目,请见「國際科學奧林匹亞」。关于法国写实派画家爱德华·马奈创作于1863年的一副油画,请见「奥林匹亚 (马奈)」。关于德國導演萊尼·里芬斯塔爾為1936年柏林奧運會拍攝的紀錄片,请见「奧林匹亞 (電影)」。关于華盛頓州首府,请见「奧林匹亞 (華盛頓�...

 

 

Voce principale: B' Katīgoria. B' Katīgoria 1962-1963Β΄ κατηγορία 1962-1963 Competizione B' Katīgoria Sport Calcio Edizione 9ª Organizzatore CFA Date dal 29 dicembre 1962 Luogo  Cipro Partecipanti 10 Formula 2 Gironi con spareggio per il titolo e play-off Risultati Vincitore Panellinios Limassol(2º titolo) Promozioni Nessuna Retrocessioni Nessuna Cronologia della competizione 1961-1962 1964-1965 Manuale La B' Katīgoria 1962-1963 fu la 9ª edizione della B' Katīgori...