Bimonster group

In mathematics, the bimonster is a group that is the wreath product of the monster group M with Z2:

The Bimonster is also a quotient of the Coxeter group corresponding to the Dynkin diagram Y555, a Y-shaped graph with 16 nodes:

Actually, the 3 outermost nodes are redundant. This is because the subgroup Y124 is the E8 Coxeter group. It generates the remaining node of Y125. This pattern extends all the way to Y444: it automatically generates the 3 extra nodes of Y555.

John H. Conway conjectured that a presentation of the bimonster could be given by adding a certain extra relation to the presentation defined by the Y444 diagram. More specifically, the affine E6 Coxeter group is , which can be reduced to the finite group by adding a single relation called the spider relation. Once this relation is added, and the diagram is extended to Y444, the group generated is the bimonster. This was proved in 1990 by Simon P. Norton; the proof was simplified in 1999 by A. A. Ivanov.

Other Y-groups

Many subgroups of the (bi)monster can be defined by adjoining the spider relation to smaller Coxeter diagrams, most notably the Fischer groups and the baby monster group. The groups Yij0, Yij1, Y122, Y123, and Y124 are finite even without adjoining additional relations. They are the Coxeter groups Ai+j+1, Di+j, E6, E7, and E8, respectively. Other groups, which would be infinite without the spider relation, are summarized below:

Y-group name Group generated
Y222
Y223
Y224 [note 1]
Y133 [note 2]
Y134 [note 2]
Y144 [note 2]
Y233
Y234
Y244
Y333
Y334
Y344
Y444 [note 3]
  1. ^ This is the group obtained when realizing Y224 as a subgroup of larger Y-group. However, if we simply adjoin the spider relation to the Coxeter group, we obtain the double cover .
  2. ^ a b c The spider relation can only be defined directly if the diagram has at least 2 nodes in all 3 directions. However, it is possible to define the spider relation for a larger group, then consider the subgroup generated by fewer nodes.
  3. ^ As mentioned before, the 3 outermost nodes of Y555 are redundant, so Y444 is sufficient to generate the bimonster.

See also

References

  • Basak, Tathagata (2007), "The complex Lorentzian Leech lattice and the Bimonster", Journal of Algebra, 309 (1): 32–56, arXiv:math/0508228, doi:10.1016/j.jalgebra.2006.05.033, MR 2301231, S2CID 125231322.
  • Ivanov, A. A. (1999), "Y-groups via Transitive Extension", Journal of Algebra, 218 (1): 142–435, doi:10.1006/jabr.1999.7882.
  • Conway, John H.; Norton, Simon P.; Soicher, Leonard H. (1988), "The Bimonster, the group Y555, and the projective plane of order 3", Computers in Algebra (Chicago, IL, 1985), Lecture Notes in Pure and Applied Mathematics, vol. 111, New York: Dekker, pp. 27–50, MR 1060755.
  • Conway, J. H.; Pritchard, A. D. (1992), "Hyperbolic reflections for the Bimonster and 3Fi24", Groups, Combinatorics & Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge: Cambridge University Press, pp. 24–45, doi:10.1017/CBO9780511629259.006, MR 1200248.
  • Conway, John H.; Simons, Christopher S. (2001), "26 implies the Bimonster", Journal of Algebra, 235 (2): 805–814, doi:10.1006/jabr.2000.8494, MR 1805481.
  • Simons, Christopher Smyth (1997), Hyperbolic reflection groups, completely replicable functions, the Monster and the Bimonster, Ph.D. thesis, Princeton University, Department of Mathematics, ISBN 978-0591-50546-7, MR 2696217.
  • Soicher, Leonard H. (1989), "From the Monster to the Bimonster", Journal of Algebra, 121 (2): 275–280, doi:10.1016/0021-8693(89)90064-1, MR 0992763.


Read other articles:

Group of nine deities in Egyptian mythology worshipped at Heliopolis Not to be confused with Enneads or Aeneid. For other uses, see Ennead (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ennead – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to remove this t...

 

ThresholdCover of Threshold #1 (March 2013), art by Howard Porter and Hi-Fi.Publication informationPublisherDC ComicsScheduleMonthlyFormatOngoing seriesGenre Science fiction, superhero Publication dateMarch – October 2013No. of issues8Creative teamWritten byKeith GiffenArtist(s)Tom Raney, Scott Kolins, Phil WinsladeLetterer(s)Dezi Sienty, David SharpeColorist(s)Andrew Dalhouse, John Kalisz, Chris Sotomayor, Hi-FiEditor(s)Kate Stewart, Joey Cavalieri, Matt Idelson, Kyle Andrukiewicz Thr...

 

President of the United States from 1963 to 1969 Lyndon Johnson and LBJ redirect here. For the American football player, see Lyndon Johnson (American football). For other uses, see LBJ (disambiguation). Lyndon B. JohnsonJohnson in 196436th President of the United StatesIn officeNovember 22, 1963 – January 20, 1969Vice President None (1963–1965)[a] Hubert Humphrey (1965–1969) Preceded byJohn F. KennedySucceeded byRichard Nixon37th Vice President of the United Sta...

Dachirin Saidꦢꦏ꦳ꦶꦫꦶꦤ꧀ꦯꦆꦢ꧀ [[Bupati Demak]] 17Masa jabatan10 Oktober 2012 – 13 Februari 2016PresidenSusilo Bambang Yudhoyono Joko WidodoGubernurBibit WaluyoGanjar Pranowo[[Wakil Bupati Demak|Wakil]]HarwantoPendahuluTafta ZainiPenggantiHarwanto Informasi pribadiLahir21 Januari 1952Demak, Jawa TengahMeninggal13 Februari 2016Semarang, Jawa TengahKebangsaanIndonesiaSunting kotak info • L • B Drs. H. Moh. Dachirin Said, SH, M.Si (21 Januari 1952&...

 

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

 

2015–16 UEFA Youth LeagueThe Colovray Stadium in Nyon hosted the semi-finals and final.Tournament detailsDates15 September 2015 – 18 April 2016Teams64 (from 37 associations)Final positionsChampions Chelsea (2nd title)Runners-up Paris Saint-GermainTournament statisticsMatches played167Goals scored538 (3.22 per match)Top scorer(s) Roberto Núñez (9 goals)← 2014–15 2016–17 → International football competition The 2015–16 UEFA Youth League was the third seaso...

Layer of feathers that covers a bird Close-up view of the plumage on a house sparrow The differences in plumage of a blue grosbeak, from top to bottom, between a breeding male (alternate plumage), a non-breeding male (basic plumage), a female, and the related indigo bunting Plumage (from Latin pluma 'feather') is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspec...

 

VerzycomuneVerzy – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneMourmelon-Vesle et Monts de Champagne TerritorioCoordinate49°09′N 4°10′E / 49.15°N 4.166667°E49.15; 4.166667 (Verzy)Coordinate: 49°09′N 4°10′E / 49.15°N 4.166667°E49.15; 4.166667 (Verzy) Superficie13,43 km² Abitanti1 078[1] (2009) Densità80,27 ab./km² Altre informazioniCod. postale51380 Fuso or...

 

Anni difficiliMilly Vitale in una scena del filmLingua originaleitaliano Paese di produzioneItalia Anno1948 Durata113 min Dati tecniciB/N Generedrammatico RegiaLuigi Zampa SoggettoVitaliano Brancati SceneggiaturaSergio Amidei, Vitaliano Brancati, Franco Evangelisti, Enrico Fulchignoni ProduttoreFerdinando Briguglio Casa di produzioneBriguglio Film Distribuzione in italianoFincine FotografiaCarlo Montuori MontaggioEraldo Da Roma MusicheFranco Casavola, dirette da Ugo Giacomozzi ScenografiaIvo ...

Chemical compound Not to be confused with Dimethylstilbestrol. DimestrolClinical dataTrade namesDepot-Ostromon; Depot-Oestromon; Depot-Cyren; SynthilaOther namesDianisylhexene; 4,4'-Dimethoxy-α,α'-diethylstilbene; Diethylstilbestrol dimethyl ether; Dimethoxydiethylstilbestrol; (E)-4,4'-(1,2-Diethylethylene)dianisoleDrug classNonsteroidal estrogen; Estrogen etherIdentifiers IUPAC name 1-methoxy-4-[(E)-4-(4-methoxyphenyl)hex-3-en-3-yl]benzene CAS Number130-79-0PubChem CID3032539ChemSpider2297...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

In this Portuguese name, the first or maternal family name is Góes and the second or paternal family name is Lobo. Edu LoboEdú LoboBackground informationBirth nameEduardo de Góes LoboBorn (1943-08-29) August 29, 1943 (age 80)Rio de Janeiro, RJOriginBrazilGenresBossa NovaWebsitehttp://edulobo.com.brMusical artist Eduardo de Góes Edu Lobo (born August 29, 1943) is a Brazilian singer, guitarist, and composer.[1] Edu Lobo, 1963. Edu Lobo, 1967 In the 1960s he was part of the...

German book author and songwriter (born 1971) Volker Strübing in 2001 Volker Strübing (born 22 April 1971 in Sondershausen, Thuringia) is a German book author and songwriter.[1] Work Since 2004 he performs regularly at poetry slams as solo act or as part of Team LSD (ca-performing with Michael Ebeling).[2] His main focus are short satirical texts written expressly for being read to an audience. Awards In October 2005 he was awarded the Slam2005 in Leipzig, which certifies hi...

 

American politician (born 1954) For the baseball player, see Hank Johnson (baseball). For others with a similar name, see Henry Johnson (disambiguation). Hank JohnsonMember of the U.S. House of Representativesfrom Georgia's 4th districtIncumbentAssumed office January 3, 2007Preceded byCynthia McKinney Personal detailsBornHenry Calvin Johnson Jr. (1954-10-02) October 2, 1954 (age 69)Washington, D.C., U.S.Political partyDemocraticSpouseMereda DavisChildren2Residence(s)Litho...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marie Louise d'Aspremont – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this message) Duchess of Lorraine Marie Louise d'AspremontDuchess of LorraineBorn1651Died1692MadridSpouseCharles IV, Duke of LorraineHeinrich Fra...

This article is about the consolidated city-county. For the county, see Macon County, Georgia. Consolidated city-county in Georgia, United StatesMaconConsolidated city-countyMacon–Bibb CountyBibb County CourthouseMercer UniversityDowntown MaconThe Allman Brothers Band Museum SealLocation within Bibb CountyMaconLocation within GeorgiaShow map of GeorgiaMaconLocation within the United StatesShow map of the United StatesCoordinates: 32°50′5″N 83°39′6″W / 32.83472°N 8...

 

Colloquial term for the US heartland A street in West Point, Indiana, in October 2010 Middle America is a colloquial term for the United States heartland, especially the culturally suburban areas of the United States, typically the Lower Midwestern region of the country, which consists of Ohio, Indiana, Iowa, Nebraska, Kansas, Missouri, and downstate Illinois. Middle America is generally used as both a geographic and cultural label, suggesting a central United States small town or suburb that...

 

American government official Ron NessenNessen in 200415th White House Press SecretaryIn officeSeptember 9, 1974 – January 20, 1977PresidentGerald FordPreceded byJerald terHorstSucceeded byJody Powell Personal detailsBornRonald Harold Nessen (1934-05-25) May 25, 1934 (age 90)Washington, D.C., U.S.Political partyRepublicanEducationShepherd UniversityAmerican University (BA) Ronald Harold Nessen (born May 25, 1934) is an American government official who served as the 15th White H...

Antonio InnocentiPresiden Emeritus Komisi Kepausan Ecclesia DeiGerejaGereja Katolik RomaPenunjukan1 Juli 1991Masa jabatan berakhir16 Desember 1995PendahuluPaul Augustin MayerPenerusAngelo FeliciJabatan lainKardinal-Imam Santa Maria di Aquiro pro hac vice (1996-2008)ImamatTahbisan imam17 Juli 1938oleh Giovanni GiorgisTahbisan uskup18 Februari 1968oleh Amleto Giovanni CicognaniPelantikan kardinal25 Mei 1985oleh Paus Yohanes Paulus IIPeringkatKardinal-Diaken (1985-96)Kardinal-Imam (199...

 

Pasen Fresco door Fra Angelico(klooster San Marco, cel 8) Aanleiding De wederopstanding van Jezus Christus Type Christelijk / algemeen Datum 31 maart 202420 april 20255 april 2026(de eerste zondag na de eerste volle maan na 21 maart) Verwant met Pesach Detail van het middenpaneel van een polyptiek van Titiaan Pasen is het belangrijkste christelijke feest in het liturgische jaar, volgend op de Goede Week. Christenen vieren deze dag vanuit hun geloof dat Jezus uit de dood is opgestaan, op de z...