Mathematical group
In mathematics , a Bianchi group is a group of the form
P
S
L
2
(
O
d
)
{\displaystyle PSL_{2}({\mathcal {O}}_{d})}
where d is a positive square-free integer . Here, PSL denotes the projective special linear group and
O
d
{\displaystyle {\mathcal {O}}_{d}}
is the ring of integers of the imaginary quadratic field
Q
(
− − -->
d
)
{\displaystyle \mathbb {Q} ({\sqrt {-d}})}
.
The groups were first studied by Bianchi (1892 ) as a natural class of discrete subgroups of
P
S
L
2
(
C
)
{\displaystyle PSL_{2}(\mathbb {C} )}
, now termed Kleinian groups .
As a subgroup of
P
S
L
2
(
C
)
{\displaystyle PSL_{2}(\mathbb {C} )}
, a Bianchi group acts as orientation-preserving isometries of 3-dimensional hyperbolic space
H
3
{\displaystyle \mathbb {H} ^{3}}
. The quotient space
M
d
=
P
S
L
2
(
O
d
)
∖ ∖ -->
H
3
{\displaystyle M_{d}=PSL_{2}({\mathcal {O}}_{d})\backslash \mathbb {H} ^{3}}
is a non-compact, hyperbolic 3-fold with finite volume, which is also called Bianchi orbifold . An exact formula for the volume, in terms of the Dedekind zeta function of the base field
Q
(
− − -->
d
)
{\displaystyle \mathbb {Q} ({\sqrt {-d}})}
, was computed by Humbert as follows. Let
D
{\displaystyle D}
be the discriminant of
Q
(
− − -->
d
)
{\displaystyle \mathbb {Q} ({\sqrt {-d}})}
, and
Γ Γ -->
=
S
L
2
(
O
d
)
{\displaystyle \Gamma =SL_{2}({\mathcal {O}}_{d})}
, the discontinuous action on
H
{\displaystyle {\mathcal {H}}}
, then
vol
-->
(
Γ Γ -->
∖ ∖ -->
H
)
=
|
D
|
3
/
2
4
π π -->
2
ζ ζ -->
Q
(
− − -->
d
)
(
2
)
.
{\displaystyle \operatorname {vol} (\Gamma \backslash \mathbb {H} )={\frac {|D|^{3/2}}{4\pi ^{2}}}\zeta _{\mathbb {Q} ({\sqrt {-d}})}(2)\ .}
The set of cusps of
M
d
{\displaystyle M_{d}}
is in bijection with the class group of
Q
(
− − -->
d
)
{\displaystyle \mathbb {Q} ({\sqrt {-d}})}
. It is well known that every non-cocompact arithmetic Kleinian group is weakly commensurable with a Bianchi group.[ 1]
References
^ Maclachlan & Reid (2003) p. 58
Bianchi, Luigi (1892). "Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî" . Mathematische Annalen . 40 (3). Springer Berlin / Heidelberg: 332–412. doi :10.1007/BF01443558 . ISSN 0025-5831 . JFM 24.0188.02 . S2CID 120341527 .
Elstrodt, Juergen; Grunewald, Fritz; Mennicke, Jens (1998). Groups Acting On Hyperbolic Spaces . Springer Monographs in Mathematics . Springer Verlag . ISBN 3-540-62745-6 . Zbl 0888.11001 .
Fine, Benjamin (1989). Algebraic theory of the Bianchi groups . Monographs and Textbooks in Pure and Applied Mathematics. Vol. 129. New York: Marcel Dekker Inc. ISBN 978-0-8247-8192-7 . MR 1010229 . Zbl 0760.20014 .
Fine, B. (2001) [1994], "Bianchi group" , Encyclopedia of Mathematics , EMS Press
Maclachlan, Colin; Reid, Alan W. (2003). The Arithmetic of Hyperbolic 3-Manifolds . Graduate Texts in Mathematics . Vol. 219. Springer-Verlag . ISBN 0-387-98386-4 . Zbl 1025.57001 .
External links