Bernstein polynomial

Bernstein polynomials approximating a curve

In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial expressed as a linear combination of Bernstein basis polynomials. The idea is named after mathematician Sergei Natanovich Bernstein.

Polynomials in Bernstein form were first used by Bernstein in a constructive proof for the Weierstrass approximation theorem. With the advent of computer graphics, Bernstein polynomials, restricted to the interval [0, 1], became important in the form of Bézier curves.

A numerically stable way to evaluate polynomials in Bernstein form is de Casteljau's algorithm.

Bernstein basis polynomials for 4th degree curve blending

Definition

Bernstein basis polynomials

The n +1 Bernstein basis polynomials of degree n are defined as

where is a binomial coefficient.

So, for example,

The first few Bernstein basis polynomials for blending 1, 2, 3 or 4 values together are:

The Bernstein basis polynomials of degree n form a basis for the vector space of polynomials of degree at most n with real coefficients.

Bernstein polynomials

A linear combination of Bernstein basis polynomials

is called a Bernstein polynomial or polynomial in Bernstein form of degree n.[1] The coefficients are called Bernstein coefficients or Bézier coefficients.

The first few Bernstein basis polynomials from above in monomial form are:

Properties

The Bernstein basis polynomials have the following properties:

  • , if or
  • for
  • and where is the Kronecker delta function:
  • has a root with multiplicity at point (note: if , there is no root at 0).
  • has a root with multiplicity at point (note: if , there is no root at 1).
  • The derivative can be written as a combination of two polynomials of lower degree:
  • The k-th derivative at 0:
  • The k-th derivative at 1:
  • The transformation of the Bernstein polynomial to monomials is and by the inverse binomial transformation, the reverse transformation is[2]
  • The indefinite integral is given by
  • The definite integral is constant for a given n:
  • If , then has a unique local maximum on the interval at . This maximum takes the value
  • The Bernstein basis polynomials of degree form a partition of unity:
  • By taking the first -derivative of , treating as constant, then substituting the value , it can be shown that
  • Similarly the second -derivative of , with again then substituted , shows that
  • A Bernstein polynomial can always be written as a linear combination of polynomials of higher degree:
  • The expansion of the Chebyshev Polynomials of the First Kind into the Bernstein basis is[3]

Approximating continuous functions

Let ƒ be a continuous function on the interval [0, 1]. Consider the Bernstein polynomial

It can be shown that

uniformly on the interval [0, 1].[4][1][5][6]

Bernstein polynomials thus provide one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval [ab] can be uniformly approximated by polynomial functions over .[7]

A more general statement for a function with continuous kth derivative is

where additionally

is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.

Probabilistic proof

This proof follows Bernstein's original proof of 1912.[8] See also Feller (1966) or Koralov & Sinai (2007).[9][5]

Motivation

We will first give intuition for Bernstein's original proof. A continuous function on a compact interval must be uniformly continuous. Thus, the value of any continuous function can be uniformly approximated by its value on some finite net of points in the interval. This consideration renders the approximation theorem intuitive, given that polynomials should be flexible enough to match (or nearly match) a finite number of pairs . To do so, we might (1) construct a function close to on a lattice, and then (2) smooth out the function outside the lattice to make a polynomial.

The probabilistic proof below simply provides a constructive method to create a polynomial which is approximately equal to on such a point lattice, given that "smoothing out" a function is not always trivial. Taking the expectation of a random variable with a simple distribution is a common way to smooth. Here, we take advantage of the fact that Bernstein polynomials look like Binomial expectations. We split the interval into a lattice of n discrete values. Then, to evaluate any f(x), we evaluate f at one of the n lattice points close to x, randomly chosen by the Binomial distribution. The expectation of this approximation technique is polynomial, as it is the expectation of a function of a binomial RV. The proof below illustrates that this achieves a uniform approximation of f. The crux of the proof is to (1) justify replacing an arbitrary point with a binomially chosen lattice point by concentration properties of a Binomial distribution, and (2) justify the inference from to by uniform continuity.

Bernstein's proof

Suppose K is a random variable distributed as the number of successes in n independent Bernoulli trials with probability x of success on each trial; in other words, K has a binomial distribution with parameters n and x. Then we have the expected value and

By the weak law of large numbers of probability theory,

for every δ > 0. Moreover, this relation holds uniformly in x, which can be seen from its proof via Chebyshev's inequality, taking into account that the variance of 1n K, equal to 1n x(1−x), is bounded from above by 1(4n) irrespective of x.

Because ƒ, being continuous on a closed bounded interval, must be uniformly continuous on that interval, one infers a statement of the form

uniformly in x for each . Taking into account that ƒ is bounded (on the given interval) one finds that

uniformly in x. To justify this statement, we use a common method in probability theory to convert from closeness in probability to closeness in expectation. One splits the expectation of into two parts split based on whether or not . In the interval where the difference does not exceed ε, the expectation clearly cannot exceed ε. In the other interval, the difference still cannot exceed 2M, where M is an upper bound for |ƒ(x)| (since uniformly continuous functions are bounded). However, by our 'closeness in probability' statement, this interval cannot have probability greater than ε. Thus, this part of the expectation contributes no more than 2M times ε. Then the total expectation is no more than , which can be made arbitrarily small by choosing small ε.

Finally, one observes that the absolute value of the difference between expectations never exceeds the expectation of the absolute value of the difference, a consequence of Holder's Inequality. Thus, using the above expectation, we see that (uniformly in x)

Noting that our randomness was over K while x is constant, the expectation of f(x) is just equal to f(x). But then we have shown that converges to f(x). Then we will be done if is a polynomial in x (the subscript reminding us that x controls the distribution of K). Indeed it is:

Uniform convergence rates between functions

In the above proof, recall that convergence in each limit involving f depends on the uniform continuity of f, which implies a rate of convergence dependent on f 's modulus of continuity It also depends on 'M', the absolute bound of the function, although this can be bypassed if one bounds and the interval size. Thus, the approximation only holds uniformly across x for a fixed f, but one can readily extend the proof to uniformly approximate a set of functions with a set of Bernstein polynomials in the context of equicontinuity.

Elementary proof

The probabilistic proof can also be rephrased in an elementary way, using the underlying probabilistic ideas but proceeding by direct verification:[10][6][11][12][13]

The following identities can be verified:

  1. ("probability")
  2. ("mean")
  3. ("variance")

In fact, by the binomial theorem

and this equation can be applied twice to . The identities (1), (2), and (3) follow easily using the substitution .

Within these three identities, use the above basis polynomial notation

and let

Thus, by identity (1)

so that

Since f is uniformly continuous, given , there is a such that whenever . Moreover, by continuity, . But then

The first sum is less than ε. On the other hand, by identity (3) above, and since , the second sum is bounded by times

(Chebyshev's inequality)

It follows that the polynomials fn tend to f uniformly.

Generalizations to higher dimension

Bernstein polynomials can be generalized to k dimensions – the resulting polynomials have the form Bi1(x1) Bi2(x2) ... Bik(xk).[1] In the simplest case only products of the unit interval [0,1] are considered; but, using affine transformations of the line, Bernstein polynomials can also be defined for products [a1, b1] × [a2, b2] × ... × [ak, bk]. For a continuous function f on the k-fold product of the unit interval, the proof that f(x1, x2, ... , xk) can be uniformly approximated by

is a straightforward extension of Bernstein's proof in one dimension. [14]

See also

Notes

  1. ^ a b c Lorentz 1953
  2. ^ Mathar, R. J. (2018). "Orthogonal basis function over the unit circle with the minimax property". Appendix B. arXiv:1802.09518 [math.NA].
  3. ^ Rababah, Abedallah (2003). "Transformation of Chebyshev-Bernstein Polynomial Basis". Comp. Meth. Appl. Math. 3 (4): 608–622. doi:10.2478/cmam-2003-0038. S2CID 120938358.
  4. ^ Natanson (1964) p. 6
  5. ^ a b Feller 1966
  6. ^ a b Beals 2004
  7. ^ Natanson (1964) p. 3
  8. ^ Bernstein 1912
  9. ^ Koralov, L.; Sinai, Y. (2007). ""Probabilistic proof of the Weierstrass theorem"". Theory of probability and random processes (2nd ed.). Springer. p. 29.
  10. ^ Lorentz 1953, pp. 5–6
  11. ^ Goldberg 1964
  12. ^ Akhiezer 1956
  13. ^ Burkill 1959
  14. ^ Hildebrandt, T. H.; Schoenberg, I. J. (1933), "On linear functional operations and the moment problem for a finite interval in one or several dimensions", Annals of Mathematics, 34 (2): 327, doi:10.2307/1968205, JSTOR 1968205

References

Read other articles:

D 85د ٥٥ D 85 berbatasan denga Dubai Creek   Negara: Uni Emirat Arab (UEA) Nama lain: Jalan Baniyas Jenis rute: D Panjang: 4.9 mi (8 km) Arah: Utara-Tenggara Perempatan Utama: Dubai D 89 (Jalan Al Maktoum), D 92 (Terowongan Al Shindagha), Jalan Umm Hurair (Jembatan Al Maktoum) Kota: Dubai D 85 (Arab: د ٥٥code: ar is deprecated ), juga dikenal sebagai Jalan Baniyas, merupakan sebuah jalan di Dubai, Uni Emirat Arab. Jalan ini dimulai dekat ujung utara Deira Corniche dan membentang d...

 

 

Kapel Santo Fransiskus dari AssisiCapilla de San Francisco de AsísKapel Santo Fransiskus dari Assisi, AntartikaLokasiPangkalan EsperanzaNegara AntartikaDenominasiGereja Katolik Roma 'Kapel Santo Fransiskus dari Assisi[1] (Spanyol: Capilla de San Francisco de Asíscode: es is deprecated ) adalah sebuah kapel Katolik yang terletak di Pangkalan Esperanza yang dikelola oleh Argentina, di ujung utara Semenanjung Antartika di Antartika.[2] Kapel ini adalah salah satu dari dela...

 

 

Sudanese novelThe Waterman's Prophecy Cover pageAuthorHamid Al-NazerOriginal titleنبوءة السقّاCountryLebanonLanguageArabicGenreFictionPublisherDar al-TanwirPublication date2015 The Waterman's Prophecy (Arabic: نبوءة السقّا) is a novel by the Sudanese author Hamid el-Nazer. The novel was first published in 2015 by Dar al-Tanwir for publishing and distribution in Beirut. It was longlisted for the international award for the Arabic novel in 2016, known as the Arabi...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Alam penyanyi – berita · surat kabar · buku · cendekiawan · JSTOR Alam (penyanyi)LahirAri Lian Akaira Malam11 Mei 1981 (umur 42)Tasikmalaya, Jawa Barat, IndonesiaNama lainAlamPekerjaanPeny...

 

 

Bintang Donald Trump di Hollywood Walk of Fame Artikel ini bagian dariseri tentangDonald Trump Presiden Amerika Serikat Kepresidenan Transisi Pelantikan Garis waktu Keputusan eksekutif proklamasi pengampunan Perjalanan 2017 2018 2019 internasional KTT Riyadh Singapura Helsinki Hanoi DMZ Penutupan Jan 2018 2018–2019 Jajak pendapat Unjuk rasa Foto di St. John Pandemi COVID-19 di Gedung Putih Proses pemakzulan Upaya pemakzulan Kontroversi Trump–Ukraina Pengangkatan pejabat Kabinet susunan Du...

 

 

U.S. incident of racial violenceFor other uses, see Hamburg attack.Hamburg MassacrePart of the Reconstruction EraHarper's Weekly cartoon decrying the Hamburg massacreDateJuly 1876LocationHamburg, South CarolinaResult Political scandal and continued violenceBelligerents White militia Red Shirts Planters Local white supremacists Democrats United States Court officials South Carolina Army National Guard Local African Americans RepublicansCasualties and losses 1 dead 6 deadvteConflicts of the Rec...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Halaman ini berisi artikel tentang transkripsi fonetik. Untuk kegunaan lain, lihat Transkripsi (disambiguasi). Transkripsi fonetik atau alih aksara bunyi (dikenal juga sebagai aksara fonetik atau notasi fonetik) adalah wujud perwakilan dari ujaran (atau bunyi) melalui makna simbol. Hal yang paling umum dari transkripsi fonetik adalah menggunakan abjad fonetik, seperti Alfabet Fonetik Internasional (the International Phonetic Alphabet). Pengertian Transkripsi Transkripsi merupakan pengubahan u...

 

 

PlayStation All-Stars Battle RoyalevideogiocoPiattaformaPlayStation 3, PlayStation Vita Data di pubblicazione 31 gennaio 2013 20 novembre 2012 21 novembre 2012 22 novembre 2012 23 novembre 2012 GenerePicchiaduro a incontri, piattaforme OrigineStati Uniti SviluppoSuperBot Entertainment, Bluepoint Games (PS Vita) PubblicazioneSony Computer Entertainment DirezioneOmar Kendall ProduzioneChan Park DesignSeth Killian MusicheJohn King Modalità di giocoGiocatore singolo, multigiocat...

† Стеллерова корова Муляж стеллеровой коровы в Лондонском музее естествознания Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстно�...

 

 

Archaeological site in Virginia, United States Not to be confused with Fort Christina. United States historic placeFort ChristannaU.S. National Register of Historic PlacesU.S. Historic districtVirginia Landmarks Register Show map of VirginiaShow map of the United StatesNearest cityLawrenceville, VirginiaCoordinates36°42′57″N 77°52′07″W / 36.71583°N 77.86861°W / 36.71583; -77.86861Area436 acres (176 ha)Built1714 (1714)Built bySpotswood, AlexanderNR...

 

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

Residential (Tower 1), Hotel (Tower 2) in Dubai, U.A.E.Al Fattan Marine TowersFattan Marine Towers in Jumeirah Beach Residences (blue glass buildings)General informationTypeResidential (Tower 1)Hotel (Tower 2)LocationDubai, U.A.E.Coordinates25°04′45.99″N 55°08′11.02″E / 25.0794417°N 55.1363944°E / 25.0794417; 55.1363944Construction started2004Completed2006HeightAntenna spire245 m (804 ft)Roof230 m (755 ft)Technical detailsFloor count51Fl...

 

 

Douglas Dolphin adalah perahu terbang amfibi sayap tinggi (high wing). Sementara hanya 58 yang dibangun, mereka melayani berbagai peran: pesawat yacht pribadi, transportasi militer, dan pencarian dan penyelamatan.[1] Dolphin berasal pada tahun 1930 sebagai Sinbad, perahu terbang murni tanpa roda. Sinbad ini dimaksudkan sebagai yacht terbang mewah. Tak gentar dengan kurangnya permintaan, Douglas meningkatkan Sinbad pada tahun 1931 sehingga amfibi itu dan bisa mendarat di air atau dara...

 

 

Pour les articles homonymes, voir Boilly. Julien Léopold BoillyPortrait de Julien Boilly, enfant par son père Louis Léopold (1808).BiographieNaissance 30 août 1796ParisDécès 14 juin 1874 (à 77 ans)Paris 10ePseudonyme Jules BoillyNationalité FrançaiseActivités Lithographe, peintre, aquafortistePériode d'activité 1825-1874Père Louis Léopold BoillyFratrie Édouard BoillyAlphonse BoillyAutres informationsMaître Louis Léopold BoillyGenre artistique Portraitmodifier - modifier...

Head of the British Army Not to be confused with Chief of the Defence Staff (United Kingdom). Chief of the General StaffFlag of the Chief of the General StaffIncumbentGeneral Sir Patrick Sanderssince 13 June 2022Ministry of DefenceBritish ArmyAbbreviationCGSMember ofDefence CouncilArmy BoardChiefs of Staff CommitteeReports toChief of the Defence StaffNominatorSecretary of State for DefenceAppointerThe MonarchOn the advice of the Prime Minister, subject to formal approval by the King-in-C...

 

 

American newspaper The Patriot LedgerTypeDaily newspaperFormatBroadsheetOwner(s)GannettPublisherMark OliveiriEditorLisa StrattanFoundedJanuary 7, 1837 (1837-01-07), as Quincy PatriotHeadquarters2 Adams PlaceQuincy, Massachusetts 02269-9159, United StatesCirculation13,063 (as of 2018)[1]OCLC number22448062 Websitepatriotledger.com The Patriot Ledger is a daily newspaper in Quincy, Massachusetts, that serves the South Shore. It publishes Monday through Saturday. Histo...

 

 

Major Tactical Air Command bases and Units in the Continental United States 1946 - 1992 Altus AFB, Oklahoma(11 June 1952 – 21 June 1954)63d Troop Carrier Group/Wing Bergstrom AFB, Texas(22 March 1946 – 1 December 1948, 1 July 1957 – 1 October 1958,1 July 1966 – 1 June 1992)27th Fighter Wing (1957–1958)75th Reconnaissance Wing (1966–1971)67th Reconnaissance Wing (1971–1992) Blytheville AFB, Arkansas(15 April – 15 August 1946, 1 July 1954 – 1 April 1958)461st Tactical Bombard...

Location of Isle of Man The Isle of Man is a self-governing crown dependency in the Irish Sea between England and Northern Ireland. The head of state is King Charles III, who holds the title of Lord of Mann. The Lord of Mann is represented by a lieutenant governor. Foreign relations and defence are the responsibility of the British Government. The Isle of Man is a low-tax economy with no capital gains tax, wealth tax, stamp duty, or inheritance tax[1] and a top rate of income tax of ...

 

 

Président du Toulouse Football Club Damien Comolli Comolli in 2014Personal informationFull name Damien Jacques ComolliDate of birth (1971-09-24) 24 September 1971 (age 53)Place of birth Béziers, FrancePosition(s) PresidentTeam informationCurrent team ToulouseManagerial careerYears Team1992–1995 Monaco Academy (manager)1996–2004 Arsenal (scout)2004–2005 Saint-Étienne (sporting director)2005–2008 Tottenham Hotspur (football director)2008–2010 Saint-Étienne (sporting director)...