The associated measure is called the Bernoulli measure[6]
The σ-algebra on X is the product sigma algebra; that is, it is the (countable) direct product of the σ-algebras of the finite set {1, ..., N}. Thus, the triplet
The N = 2 Bernoulli scheme is called a Bernoulli process. The Bernoulli shift can be understood as a special case of the Markov shift, where all entries in the adjacency matrix are one, the corresponding graph thus being a clique.
Matches and metrics
The Hamming distance provides a natural metric on a Bernoulli scheme. Another important metric is the so-called metric, defined via a supremum over string matches.[7]
Let and be two strings of symbols. A match is a sequence M of pairs of indexes into the string, i.e. pairs such that understood to be totally ordered. That is, each individual subsequence and are ordered: and likewise
The -distance between and is
where the supremum is being taken over all matches between and . This satisfies the triangle inequality only when and so is not quite a true metric; despite this, it is commonly called a "distance" in the literature.
Generalizations
Most of the properties of the Bernoulli scheme follow from the countable direct product, rather than from the finite base space. Thus, one may take the base space to be any standard probability space, and define the Bernoulli scheme as
This works because the countable direct product of a standard probability space is again a standard probability space.
As a further generalization, one may replace the integers by a countablediscrete group, so that
For this last case, the shift operator is replaced by the group action
for group elements and understood as a function (any direct product can be understood to be the set of functions , as this is the exponential object). The measure is taken as the Haar measure, which is invariant under the group action:
These generalizations are also commonly called Bernoulli schemes, as they still share most properties with the finite case.
This may be seen as resulting from the general definition of the entropy of a Cartesian product of probability spaces, which follows from the asymptotic equipartition property. For the case of a general base space (i.e. a base space which is not countable), one typically considers the relative entropy. So, for example, if one has a countable partition of the base Y, such that , one may define the entropy as
In general, this entropy will depend on the partition; however, for many dynamical systems, it is the case that the symbolic dynamics is independent of the partition (or rather, there are isomorphisms connecting the symbolic dynamics of different partitions, leaving the measure invariant), and so such systems can have a well-defined entropy independent of the partition.
A system is termed "loosely Bernoulli" if it is Kakutani-equivalent to a Bernoulli shift; in the case of zero entropy, if it is Kakutani-equivalent to an irrational rotation of a circle.
^P. Shields, The theory of Bernoulli shifts, Univ. Chicago Press (1973)
^Michael S. Keane, "Ergodic theory and subshifts of finite type", (1991), appearing as Chapter 2 in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Tim Bedford, Michael Keane and Caroline Series, Eds. Oxford University Press, Oxford (1991). ISBN0-19-853390-X
^Pierre Gaspard, Chaos, scattering and statistical mechanics (1998), Cambridge University press