The kernel of the criterion is that a complex pole pair must be placed on the imaginary axis of the complex frequency plane if steady state oscillations should take place. In the real world, it is impossible to balance on the imaginary axis; small errors will cause the poles to be either slightly to the right or left, resulting in infinite growth or decreasing to zero, respectively. Thus, in practice a steady-state oscillator is a non-linear circuit; the poles are manipulated to be slightly to the right, and a nonlinearity is introduced that reduces the loop gain when the output is high.
Criterion
It states that if A is the gain of the amplifying element in the circuit and β(jω) is the transfer function of the feedback path, so βA is the loop gain around the feedback loop of the circuit, the circuit will sustain steady-state oscillations only at frequencies for which:
The loop gain is equal to unity in absolute magnitude, that is, and
The phase shift around the loop is zero or an integer multiple of 2π:
Barkhausen's criterion is a necessary condition for oscillation but not a sufficient condition: some circuits satisfy the criterion but do not oscillate.[5] Similarly, the Nyquist stability criterion also indicates instability but is silent about oscillation. Apparently there is not a compact formulation of an oscillation criterion that is both necessary and sufficient.[6]
Erroneous version
Barkhausen's original "formula for self-excitation", intended for determining the oscillation frequencies of the feedback loop, involved an equality sign: |βA| = 1. At the time conditionally-stable nonlinear systems were poorly understood; it was widely believed that this gave the boundary between stability (|βA| < 1) and instability (|βA| ≥ 1), and this erroneous version found its way into the literature.[7] However, sustained oscillations only occur at frequencies for which equality holds.
^Barkhausen, H. (1935). Lehrbuch der Elektronen-Röhren und ihrer technischen Anwendungen [Textbook of Electron Tubes and their Technical Applications] (in German). Vol. 3. Leipzig: S. Hirzel. ASINB0019TQ4AQ. OCLC682467377.
^Lindberg, Erik (26–28 May 2010). "The Barkhausen Criterion (Observation ?)"(PDF). Proceedings of 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010), Dresden, Germany. Inst. of Electrical and Electronic Engineers. pp. 15–18. Archived from the original(PDF) on 4 March 2016. Retrieved 2 February 2013. discusses reasons for this. (Warning: large 56MB download)
^von Wangenheim, Lutz (2010), "On the Barkhausen and Nyquist stability criteria", Analog Integrated Circuits and Signal Processing, 66 (1), Springer Science+Business Media, LLC: 139–141, doi:10.1007/s10470-010-9506-4, ISSN1573-1979, S2CID111132040. Received: 17 June 2010 / Revised: 2 July 2010 / Accepted: 5 July 2010.