Barbados women's national rugby union team

Barbados
UnionBarbados Rugby Football Union
First colours
World Rugby ranking
Current64 (as of 15 July 2024)
Highest59
First international
Barbados  3–54  Cayman Islands
(Bridgetown; 21 June 2009)
Biggest win
Barbados  49–0  Saint Vincent and the Grenadines
(Bridgetown; 27 June 2009)
Biggest defeat
Barbados  0–78  Trinidad and Tobago
(Bridgetown; 24 June 2009)

The Barbados women's national rugby union team are a national sporting side of Barbados, representing them at rugby union. The side first played in 2009.

History

Barbados hosted the 2009 NAWIRA Women's Rugby Championship. They played their first test match against the Cayman Islands on 21 June 2009, they lost 3–54.[1] Their only win to date was the 49–0 victory against Saint Vincent and the Grenadines at the same tournament.

Results summary

(Full internationals only, updated to 28 April 2023)

Barbados Internationals From 2009
Opponent First Match Played Won Drawn Lost Win %
 Cayman Islands 2009 1 0 0 1 0.00%
 Saint Vincent 2009 1 1 0 0 100.00%
 Trinidad and Tobago 2009 1 0 0 1 0.00%
Summary 2009 3 1 0 2 33.33%

Results

Full internationals

Won Lost Draw
Test Date Opponent PF PA Venue Event Ref
1 2009-06-21  Cayman Islands 3 54 Bridgetown 2009 NAWIRA Caribbean Championship [2]
2 2009-06-24  Trinidad and Tobago 0 78 Bridgetown 2009 NAWIRA Caribbean Championship [2]
3 2009-06-27  Saint Vincent 49 0 Bridgetown 2009 NAWIRA Caribbean Championship [2]

See also

References

  1. ^ "Trinis flouted the laws". CaymanCompass.com. 2009-07-02. Archived from the original on 2023-01-01. Retrieved 2023-01-01.
  2. ^ a b c "Women's NAWIRA Championship". RugbyArchive.net. 2016-07-07. Archived from the original on 2022-12-15. Retrieved 2022-12-15.

Read other articles:

Toy (transliterasi Ibrani: טוי) adalah sebuah lagu yang direkam oleh penyanyi Israel Netta, dan perwakilan Israel di Kontes Lagu Eurovision 2018. Rekaman tersebut ditulis oleh Doron Medalie dan Stav Beger, dan diproduksi oleh Beger.[1][2] Lagu tersebut dirilis pada 11 Maret 2018 bersama dengan klip video musik resminya, yang disutradarai oleh Keren Hochma. Lagu tersebut bocor di dunia maya sehari sebelum perilisan resmi.[3] Referensi ^ Herbert, Emily (25 February 20...

 

 

Anastasio Somoza GarcíaNama dalam bahasa asli(es) Anastasio Somoza García BiografiKelahiran1r Februari 1896 San Marcos (en) Kematian29 September 1956 (60 tahun)Ancón, Panama (en) Penyebab kematianLuka tembak Tempat pemakamanManagua   Presiden Nikaragua 7 Mei 1950 – 29 September 1956  21è Presiden Nikaragua 1r Januari 1937 – 1r Mei 1947 ← Carlos Alberto Brenes (en) – Leonardo Argüello Barreto (en) → Data pribadiPendidikan...

 

 

American artist This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Dirk StrangelyBornJohn Christopher Carson (1978-08-08) August 8, 19...

The Land of HopeSutradaraSion SonoPemeranIsao NatsuyagiNaoko OtaniJun MurakamiMegumi KagurazakaDenDenTanggal rilis 7 September 2012 (2012-09-07) (Festival Flm InternasionalToronto) 20 Oktober 2012 (2012-10-20) (Jepang) Durasi133 menitNegaraJepang Britania Raya TaiwanBahasaJepang The Land of Hope (希望の国code: ja is deprecated , Kibō no Kuni) adalah film Jepang tahun 2012 yang disutradarai oleh Sion Sono.[1] Menyusul kecelakaan nuklir, warga sekitar terpaksa men...

 

 

Roman Province Provincia Mauretania TingitanaProvince of the Roman Empire42 AD–Early 8th centuryThe province of Mauretania Tingitana within the Roman Empire, c. 125 ADCapitalTingis, SeptemHistorical eraClassical Antiquity, Late Antiquity• Incorporated into the Roman Empire as a full province 42 AD• Vandal Conquest 430s AD• Byzantine partial reconquest by Vandalic War 534 AD• Muslim conquest Early 8th century Preceded by Succeeded by Mauretania Vandal Kingdo...

 

 

Family of fungi This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Ajellomycetaceae – news · newspapers · books · scholar · JSTOR (October 2023) Ajellomycetaceae Paracoccidioides brasiliensis slant culture.jpg Scientific classification Kingdom: Fungi Division: Ascomycota Class: Eurotiomycetes Order: ...

Genus of amphibians For other uses, see Chorus frog (disambiguation). Chorus frog Pseudacris ocularis, little grass frog Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Anura Family: Hylidae Subfamily: Acrisinae Genus: PseudacrisFitzinger, 1843 Synonyms Chorophilus Baird, 1854 Helocaetes Baird, 1854 Heloecetes Baird, 1859 (misspelling Hyliola Mocquard, 1899 Limnaoedus Mittleman & List, 1953 Parapseudacris Hardy & Burrows, 1986 Pseu...

 

 

Badminton playerJuliane SchenkPersonal informationCountryGermanyBorn (1982-11-26) 26 November 1982 (age 41)Krefeld, West GermanyHeight1.73 m (5 ft 8 in)Retired2014HandednessRightWomen's singlesCareer record516 wins, 269 lossesHighest ranking2 (20 June 2013) Medal record Women's badminton Representing  Germany World Championships 2011 London Women's singles Uber Cup 2008 Jakarta Women's team European Championships 2010 Manchester Women's singles 2012 Karlskrona W...

 

 

Quaregna abolished municipality in ItalyFrazione Tempat Negara berdaulatItaliaDaerah di ItaliaPiemonteProvinsi di ItaliaProvinsi BiellaKomune di ItaliaQuaregna Cerreto NegaraItalia Ibu kotaQuaregna PendudukTotal1.428  (2018 )GeografiLuas wilayah5,84 km² [convert: unit tak dikenal]Ketinggian260 m Berbatasan denganCossato Piatto Valdengo Valle San Nicolao Cerreto Castello Vallanzengo SejarahSanto pelindungMartinus dari Tours Informasi tambahanKode pos13854 Zona waktuUTC+1 UTC+2 Kode ...

  لمعانٍ أخرى، طالع كرملين (توضيح). الكرملين والساحة الحمراء، موسكو موقع اليونيسكو للتراث العالمي كرملن والساحة الحمراء وقبر لينين الدولة  روسيا النوع ثقافي المعايير i, ii, iv, vi رقم التعريف 545 المنطقة شرق أوروبا الإحداثيات 55°45′06″N 37°37′04″E / 55.751666666667°N 37.61777777777...

 

 

Heavy gun 8-inch gun M1 8-inch gun at the U.S. Army Field Artillery Museum, Fort Sill, OKTypeHeavy gunPlace of originUnited StatesService historyUsed byUnited StatesUnited KingdomWarsWorld War IIProduction historyDesigned1939–1942Produced1942–1945SpecificationsMassCombat: 69,300 lb (31,400 kg)Barrel length33 ft 4 in (10.16 m) L/50Shellseparate-loading, bagged chargeCaliber203 mm (8.0 in)BreechInterrupted screwRecoilHydro-pneumaticCarr...

 

 

American digital asset exchange company Coinbase Global, Inc.Company typePublicTraded asNasdaq: COIN (Class A)Russell 1000 componentIndustryCryptocurrencyFoundedJune 2012; 12 years ago (2012-06), in San Francisco, California, U.S.[1]FoundersBrian ArmstrongFred EhrsamHeadquartersNo physical offices[a]Area served100+ countriesKey peopleBrian Armstrong (chairman & CEO)Emilie Choi (president & COO)Alesia Haas (CFO)ProductsBitcoinBitcoin CashEthe...

RiverVatrakLocationCountryIndiaStateGujarat, RajasthanPhysical characteristicsMouth  • coordinates22°39′14″N 72°32′34″E / 22.6539°N 72.5429°E / 22.6539; 72.5429Length243 kilometers The Vatrak is a tributary of the Sabarmati River which flows for 243 kilometers in Gujarat, India.[1] It originates in the hills of Dungarpur, Rajasthan and enters in Gujarat near village Moydi of Meghraj taluka.[1] Basin Vatrak run paral...

 

 

أجسام ليوي (بالإنجليزية: Lewy Body)‏ هي تجمعات غير طبيعية لبروتينات داخل خلايا عصبية مسببة لمرض باركنسون، داء جسيمات ليوي وأمراض أخرى.[1][2] كما تشاهد هذه الأجسام في الضمور الجهازي المتعدد، خصوصاً النمط الباركنسوني. يمكن مشاهدة هذه الأجسام تحت المجهر في عينات الدماغ وج�...

 

 

Entity responsible for the creation of the universe Part of a series onTheism Types of faith Agnosticism Apatheism Atheism Classical theism Deism Henotheism Ietsism Ignosticism Monotheism Monism Dualism Monolatry Kathenotheism Omnism Pandeism Panentheism Pantheism Polytheism Transtheism Specific conceptions Brahman Creator Demiurge Deus Father Form of the Good God Great Architect Monad Mother Summum bonum Supreme Being Sustainer The Lord Trinity Tawhid Ditheism Monism Personal Unitarianism In...

U.S. presidential administration from 1961 to 1963 For a chronological guide, see Timeline of the John F. Kennedy presidency. Presidency of John F. KennedyJanuary 20, 1961 – November 22, 1963 (Assassination)CabinetSee listPartyDemocraticElection1960SeatWhite House← Dwight D. EisenhowerLyndon B. Johnson → Seal of the presidentLibrary website This article is part of a series aboutJohn F. Kennedy Military service in WWII Electoral history Why England Slept Profil...

 

 

American statistician Joseph C. G. KennedyJoseph Calm Griffith KennedySuperintending Clerk of the United States CensusIn office1850–1850PresidentMillard FillmoreSuperintending Clerk of the United States CensusIn office1860–1860PresidentJames Buchanan Personal detailsBornJoseph Calm Griffith KennedyApril 1, 1813PennsylvaniaDiedJuly 13, 1887(1887-07-13) (aged 74)Washington, D.C.Political partyWhigOccupationPolitician, lawyer, journalist Joseph Calm Griffith Kennedy (April 1, 1813 – J...

 

 

赤川 次郎 (あかがわ じろう)誕生 (1948-02-29) 1948年2月29日(76歳) 日本・福岡県福岡市博多区職業 小説家国籍 日本活動期間 1976年 -ジャンル 推理小説代表作 三毛猫ホームズシリーズ三姉妹探偵団幽霊シリーズ主な受賞歴 オール讀物推理小説新人賞(1976年) 吉川英治文学賞(2016年)デビュー作 幽霊列車 ウィキポータル 文学テンプレートを表示 赤川 次郎(あかがわ �...

Hamlet in Póvoa de Varzim, Portugal This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Calves, Portugal – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) Calves is a picturesque location in the outskirts of Póvoa de Varzim. Calves is a hamlet in Póvoa de Varzim, Portugal. It...

 

 

The Cantor–Bernstein–Schroeder theorem of set theory has a counterpart for measurable spaces, sometimes called the Borel Schroeder–Bernstein theorem, since measurable spaces are also called Borel spaces. This theorem, whose proof is quite easy, is instrumental when proving that two measurable spaces are isomorphic. The general theory of standard Borel spaces contains very strong results about isomorphic measurable spaces, see Kuratowski's theorem. However, (a) the latter theorem is very...