A stack is called limit preserving if it is compatible with filtered direct limits in , meaning given a filtered system there is an equivalence of categories
An element of is called an algebraic element if it is the henselization of an -algebra of finite type.
A limit preserving stack over is called an algebraic stack if
For any pair of elements the fiber product is represented as an algebraic space
There is a scheme locally of finite type, and an element which is smooth and surjective such that for any the induced map is smooth and surjective.
^Artin, M. (2015-12-31), "Algebraization of formal moduli: I", Global Analysis: Papers in Honor of K. Kodaira (PMS-29), Princeton: Princeton University Press, pp. 21–72, doi:10.1515/9781400871230-003, ISBN978-1-4008-7123-0
^Artin, M. (January 1970). "Algebraization of Formal Moduli: II. Existence of Modifications". The Annals of Mathematics. 91 (1): 88–135. doi:10.2307/1970602. ISSN0003-486X. JSTOR1970602.
^Deligne, P.; Rapoport, M. (1973), Les schémas de modules de courbes elliptiques, Lecture Notes in Mathematics, vol. 349, Springer Berlin Heidelberg, pp. 143–316, doi:10.1007/bfb0066716, ISBN978-3-540-06558-6