Armillaria gallica (synonymous with A. bulbosa and A. lutea) is a species of honey mushroom in the family Physalacriaceae of the order Agaricales. The species is a common and ecologically important wood-decay fungus that can live as a saprobe, or as an opportunistic parasite in weakened tree hosts to cause root or butt rot. It is found in temperate regions of Asia, North America, and Europe. The species forms fruit bodies singly or in groups in soil or rotting wood. The fungus has been inadvertently introduced to South Africa. Armillaria gallica has had a confusing taxonomy, due in part to historical difficulties encountered in distinguishing between similar Armillaria species. The fungus received international attention in the early 1990s when an individual colony living in a Michigan forest was reported to cover an area of 15 hectares (37 acres), weigh at least 9.5 tonnes (9,500 kg; 21,000 lb), and be 1,500 years old. This individual is popularly known as the "humongous fungus", and is a tourist attraction and inspiration for an annual mushroom-themed festival in Crystal Falls. Recent studies have revised the fungus's age to 2,500 years and its size to about 400 tonnes (400,000 kg; 880,000 lb), four times the original estimate.[1]
Armillaria gallica is a largely subterranean fungus, and it produces fruit bodies that are up to about 10 cm (3.9 in) in diameter, yellow-brown, and covered with small scales. On the underside of the caps are gills that are white to creamy or pale orange. The stem may be up to 10 cm (3.9 in) long, with a white cobwebby ring that divides the color of the stem into pale orange to brown above, and lighter-colored below. The fungus can develop an extensive system of underground root-like structures, called rhizomorphs, that help it to efficiently decompose dead wood in temperate broadleaf and mixed forests. It has been the subject of considerable scientific research due to its importance as a plant pathogen, its ability to bioluminesce, its unusual life cycle, and its ability to form large and long-lived colonies.
Confusion has surrounded the nomenclature and taxonomy of the species now known as Armillaria gallica, paralleling that surrounding the genus Armillaria.[3] The type species, Armillaria mellea, was until the 1970s believed to be a pleiomorphic species with a wide distribution, variable pathogenicity, and one of the broadest host ranges known for the fungi.[4] In 1973, Veikko Hintikka reported a technique to distinguish between Armillaria species by growing them together as single spore isolates on petri dishes and observing changes in the morphology of the cultures.[5] Using a similar technique, Kari Korhonen showed in 1978 that the European Armillaria melleaspecies complex could be separated into five reproductively isolated species, which he named "European Biological Species" (EBS) A through E.[6] About the same time, the North American A. mellea was shown to be ten different species (North American Biological Species, or NABS I through X);[7] NABS VII was demonstrated shortly after to be the same species as EBS E.[8] Because several research groups had worked with this widely distributed species, it was assigned several different names.
The species that Korhonen called EBS B was named A. bulbosa by Helga Marxmüller in 1982,[9] as it was thought to be equivalent to Armillaria melleavar.bulbosa, first described by Jean Baptiste Barla (Joseph Barla) in 1887,[10] and later raised to species status by Josef Velenovský in 1927.[11] In 1973, the French mycologist Henri Romagnesi, unaware of Velenovský's publication, published a description of the species he called Armillariella bulbosa, based on specimens he had found near Compiègne and Saint-Sauveur-le-Vicomte in France. These specimens were later demonstrated to be the same species as the EBS E of Korhonen; EBS B was later determined to be A. cepistipes.[12] Therefore, the name A. bulbosa was a misapplied name for EBS E. In 1987 Romagnesi and Marxmüller renamed EBS E to Armillaria gallica.[13] Another synonym, A. lutea, had originally been described by Claude Casimir Gillet in 1874,[14] and proposed as a name for EBS E.[15][16] Although the name had priority due to its early publication date, it was rejected as a nomen ambiguum because of a lack of supporting evidence to identify the fungus, including a specimen, type locality, and incomplete collection notes.[12]A. inflata (Velenovský, 1920) may represent another synonym, but the type specimens were not preserved, so it is considered a dubious name (nomen dubium).[17] As of 2010, both the Index Fungorum and MycoBank consider Armillaria gallica Marxm. & Romagn. to be the current name, with A. bulbosa and A. lutea as synonyms.[18][19]
Phylogenetic analysis of North American Armillaria species based on analysis of amplified fragment length polymorphism data suggests that A. gallica is most closely related to A. sinapina, A. cepistipes, and A. calvescens.[2] These results are similar to those reported in 1992 that compared sequences of nuclear ribosomal DNA.[20]
The specific epithetgallica is botanical Latin for "French" (from Gallia, "Gaul"),[21] and refers to the type locality.[22] The prior name bulbosa is Latin for "bulb-bearing, bulbous" (from bulbus and the suffix -osa).[21][22]Armillaria is derived from the Latin armilla, or "bracelet".[23]
Description
Young fruit bodies have a cottony partial veil that protects the developing gills.
Mature gills
The fruit bodies of Armillaria gallica have caps that are 2.5–9.5 cm (1.0–3.7 in) broad, and depending on their age, may range in shape from conical to convex to flattened. The caps are brownish-yellow to brown when moist, often with a darker-colored center; the color tends to fade upon drying. The cap surface is covered with slender fibers (same color as the cap) that are erect, or sloping upwards.
When the fruit bodies are young, the underside of the caps have a cottony layer of tissue stretching from the edge of the cap to the stem—a partial veil—which serves to protect the developing gills. As the cap grows in size the membrane is eventually pulled away from the cap to expose the gills. The gills have an adnate (squarely attached) to somewhat decurrent (extending down the length of the stem) attachment to the stem. They are initially white, but age to a creamy or pale orange covered with rust-colored spots. The stem is 4–10 cm (1.6–3.9 in) long and 0.6–1.8 cm (0.24–0.71 in) thick, and almost club-shaped with the base up to 1.3–2.7 cm (0.5–1.1 in) thick. Above the level of the ring, the stem is pale orange to brown, while below it is whitish or pale pink, becoming grayish-brown at the base. The ring is positioned about 0.4–0.9 cm (0.16–0.35 in) below the level of the cap, and may be covered with yellowish to pale-brownish woolly cottony mycelia. The base of the stem is attached to rhizomorphs, black root-like structures 1–3 mm in diameter. While the primary function of the below-ground mycelia is to absorb nutrients from the soil, the rhizomorphs serve a more exploratory function, to locate new food bases.[24][25]
Microscopic features
When the spores are seen in deposit, such as with a spore print, they appear whitish. They have an ellipsoid or oblong shape, usually contain an oil droplet, and have dimensions of 7–8.5 by 5–6 μm. The spore-bearing cells, the basidia, are club-shaped, four-spored (rarely two-spored), and measure 32–43 by 7–8.7 μm.[26] Other cells present in the fertile hymenium include the cheilocystidia (cystidia present on the edge of a gill), which are club-shaped, roughly cylindrical and 15–25 by 5.0–12 μm. Cystidia are also present on the stem (called caulocystidia), and are broadly club-shaped, measuring 20–55 by 11–23 μm.[27] The cap cuticle is made of hyphae that are irregularly interwoven and project upward to form the scales seen on the surface. The hyphae that make up the surface scales typically measure 26–88 μm long by 11–27 μm thick and can be covered with a crust of pigment. Clamp connections are present in the hyphae of most tissues.[26]
Edibility
Like all Armillaria species, A. gallica is considered edible. Thorough cooking is usually recommended, as the raw mushroom tastes acrid when fresh or undercooked.[24] One author advises to consume only a small portion initially, as some people may experience an upset stomach.[28] The taste is described as "mild to bitter", and the odor "sweet",[29] or reminiscent of camembert cheese.[27]
Similar species
Armillaria calvescens is rather similar in appearance, and can only be reliably distinguished from A. gallica by observing microscopic characteristics. A. calvescens has a more northern distribution, and in North America, is rarely found south of the Great Lakes.[29]A. mellea has a thinner stem than A. gallica, but can be more definitively distinguished by the absence of clamps at the base of the basidia.[30] Similarly, A. cepistipes and A. gallica are virtually identical in appearance (especially older fruit bodies), and are identified by differences in geographical distribution, host range, and microscopic characteristics. Molecular methods have been developed to discriminate between the two species by comparing DNA sequences in the gene coding translation elongation factor 1-alpha.[27]
Metabolites
Armillaria gallica can produce cyclobutane-containing metabolites such as arnamiol,[31] a natural product that is classified as a sesquiterpenoidarylester.[32] Although the specific function of arnamiol is not definitively known, similar chemicals present in other Armillaria species are thought to play a role in inhibiting the growth of antagonistic bacteria or fungi, or in killing cells of the host plant prior to infection.[33]
Bioluminescence
The mycelia and fruiting bodies of Armillaria gallica are known to be bioluminescent. Experiments have shown that the intensity of the luminescence is enhanced when the mycelia are disturbed during growth.[34] Bioluminescence is caused by the action of luciferases, enzymes that produce light by the oxidation of a luciferin (a pigment).[35] The biological purpose of bioluminescence in fungi is not definitively known, although several hypotheses have been suggested: it may help attract insects to help with spore dispersal,[36] it may be a by-product of other biochemical functions,[37] or it may help deter heterotrophs that might consume the fungus.[36]
Humongous fungus
Researchers reported finding Armillaria gallica in the Upper Peninsula of Michigan in the early 1990s, during an unrelated research project to study the possible biological effects of extremely low frequency radio stations, which were being investigated as a means to communicate with submerged submarines. In one particular forest stand, Armillaria-infected oak trees had been harvested, and their stumps were left to rot in the field. Later, when red pines were planted in the same location, the seedlings were killed by the fungus, identified as A. gallica (then known as A. bulbosa). Using molecular genetics, they determined that the underground mycelia of one individual fungal colony covered 15 ha (37 acres), weighing over 9,500 kilograms (21,000 lb), with an estimated age of 1,500 years.[38][39] The analysis used restriction fragment length polymorphism (RFLP) and random amplification of polymorphic DNA (RAPD) to examine isolates collected from fruit bodies and rhizomorphs (underground aggregations of fungal cells that resemble plant roots) along 1-kilometer (0.6 mi) transects in the forest. The 15-hectare area yielded isolates that had identical mating type alleles and mitochondrial DNArestriction fragment patterns; this degree of genetic similarity indicated that the samples were all derived from a single genetic individual, or clone, that had reached its size through vegetative growth. In their conclusion, the authors noted: "This is the first report estimating the minimum size, mass, and age of an unambiguously defined fungal individual. Although the number of observations for plants and animals is much greater, members of the fungal kingdom should now be recognized as among the oldest and largest organisms on earth."[40] After the Nature paper was published, major media outlets from around the world visited the site where the specimens were found; as a result of this publicity, the individual acquired the common name "humongous fungus".[39] There was afterward some scholarly debate as to whether the fungus qualified to be considered in the same category as other large organisms such as the blue whale or the giant redwood.[41]
The life cycle of A. gallica includes two diploidization–haploidization events. The first of these is the usual process of cell fusion (forming a diploid) followed by meiosis during the formation of haploid basidiospores.[44] The second event is more cryptic and occurs before fruit body formation. In most basidiomycetous fungi, the hyphae of compatible mating types will fuse to form a two-nucleate, or dikaryotic stage; this stage is not observed in Armillaria species, which have cells that are mostly monokaryotic and diploid. Genetic analyses suggest that the dikaryotic mycelia undergo an extra haploidization event prior to fruit body formation to create a genetic mosaic.[45] These regular and repeating haploidization events result in increased genetic diversity, which helps the fungus to adapt to unfavorable changes in environmental conditions, such as drought.[46][47][48]
The growth rate of A. gallica rhizomorphs is between 0.3 and 0.6 m (1.0 and 2.0 ft) per year.[49]Population genetic studies of the fungus conducted in the 1990s demonstrated that genetic individuals grow mitotically from a single point of origin to eventually occupy territories that may include many adjacent root systems over large areas (several hectares) of forest floor.[40][50][51] Based on the low mutation rates observed in large, long-lived individuals, A. gallica appears to have an especially stable genome.[52] It has also been hypothesized that genetic stability may result from self-renewing mycelial repositories of nuclei with stem cell-like properties.[53]
Specific mechanisms of somatic growth have been proposed to explain how species such as A. gallica keep somatic mutations in check, thus promoting their longevity.[54] The common element of these mechanisms is asymmetric cell division in which a group of cells is maintained that divide infrequently and are thus less prone to replication errors leading to mutations. At the somatic growth front of A. gallica mutation rate was proposed to be kept low by cells dividing infrequently, but giving rise to cells behind the growth front that divide rapidly thus promoting tissue growth although at the expense of a higher mutation rate.[54]
Habitat and distribution
Armillaria gallica can normally be found on the ground, but sometimes on stumps and logs.[55] Mushrooms that appear to be terrestrial are attached to plant roots underneath the surface.[29] It is widely distributed and has been collected in North America, Europe,[28] and Asia (China,[56] Iran,[57] and Japan[58]). The species has also been found in the Western Cape Province of South Africa, where it is thought to have been introduced from potted plants imported from Europe during the early colonization of Cape Town.[59] In Scandinavia, it is absent in areas with very cold climates, like Finland or Norway, but it is found in southern Sweden. It is thought to be the most prevalent low altitude species of Armillaria in Great Britain and France. The upper limits of its altitude vary by region. In the French Massif Central, it is found up to 1,100 m (3,600 ft), while in Bavaria, which has a more continental climate, the upper limit of distribution reaches 600 m (2,000 ft).[60] In Serbian forests, it is the most common Armillaria between elevations of 70 to 1,450 m (230 to 4,760 ft).[61]Field studies suggest that A. gallica prefers sites that are low in organic matter and have high soil pHs.[62][63]
In North America, it is common east of the Rocky Mountains, but rare in the Pacific Northwest.[64] In California, where it is widely distributed, the fungus is found in a variety of plant communities, including aspen, coastal oak woodland, Douglas Fir, Klamath mixed conifer, montane hardwood, montane hardwood-conifer, montane riparian, Redwood, Sierran mixed conifer, valley oak woodland, valley-foothill riparian, and White Fir.[65] It was found to be the most common Armillaria species in hardwood and mixed oak forests in western Massachusetts.[66]
A Chinese study published in 2001 used the molecular biological technique restriction fragment length polymorphism to analyze the differences in DNA sequence between 23 A. gallica specimens collected from the Northern Hemisphere. The results suggest that based on the restriction fragment length polymorphism patterns observed, there are four global A. gallica subpopulations: the Chinese, European, North American–Chinese, and North American–European geographical lineages.[67] A 2007 study on the northeastern and southwestern Chinese distribution of Armillaria, using fruit body and pure culture morphology, concluded that there are several unnamed species (Chinese biological species C, F, H, J and L) that are similar to the common A. gallica.[56]
Ecology
Armillaria gallica is a weaker pathogen than the related A. mellea or A. solidipes, and is considered a secondary parasite—typically initiating infection only after the host's defenses have been weakened by insect defoliation, drought, or infection by another fungus.[68] Fungal infection can lead to root rot or butt rot.[69] As the diseased trees die, the wood dries, increasing the chance of catching fire after being struck by lightning. The resulting forest fire may, in turn, kill the species that killed the trees.[70] Plants that are under water stress caused by dry soils or waterlogging are more susceptible to infection by A. gallica.[71] It has been shown to be one of several Armillaria species responsible for widespread mortality of oak trees in the Arkansas Ozarks.[72] The fungus has also been shown to infect Daylily in South Carolina,[73]Northern highbush blueberry (Vaccinium corymbosum) in Italy[74][75] and vineyards (Vitis species) of Rías Baixas in northwestern Spain. The latter infestation "may be related to the fact that the vineyards from which they were isolated were located on cleared forestry sites".[76] When A. solidipes and A. gallica co-occur in the same forest, infection of root systems by A. gallica may reduce damage or prevent infection from A. solidipes.[77]
Armillaria gallica can develop an extensive subterranean system of rhizomorphs, which helps it to compete with other fungi for resources or to attack trees weakened by other fungi. A field study in an ancient broadleaved woodland in England showed that of five Armillaria species present in the woods, A. gallica was consistently the first to colonize tree stumps that had been coppiced the previous year.[49]Fractal geometry has been used to model the branching patterns of the hyphae of various Armillaria species. Compared to a strongly pathogenic species like A. solidipes, A. gallica has a relatively sparse branching pattern that is thought to be "consistent with a foraging strategy in which acceptable food bases may be encountered at any distance, and which favours broad and divisive distribution of potential inoculum".[25] Because the rhizomorphs form regular networks, mathematical concepts of graph theory have been employed to describe fungal growth and interpret ecological strategies, suggesting that the specific patterns of network attachments allow the fungus "to respond opportunistically to spatially and temporally changing environments".[78]
Armillaria gallica may itself be parasitized by other soil flora. Several species of the fungus Trichoderma, including Trichoderma polysporum, T. harzianum and T. viride, are able to attack and penetrate the outer tissue of A. gallica rhizomorphs and parasitize the internal hyphae. The infected rhizomorphs become devoid of living hyphae about one week after the initial infection.[79]Entoloma abortivum is another fungus that can live parasitically upon A. gallica. The whitish-gray malformed fruit bodies that may result are due to the E. abortivum hyphae penetrating the mushroom and disrupting its normal development.[80]
^Anderson JB, Ullrich RC (1979). "Biological species of Armillaria in North America". Mycologia. 71 (2): 401–14. doi:10.2307/3759160. JSTOR3759160.
^Anderson JB, Korhonen K, Ullrich RC (1980). "Relationships between European and North American biological species of Armillaria mellea". Experimental Mycology. 4 (1): 78–86. doi:10.1016/0147-5975(80)90053-5.
^Marxmüller H (1982). "Étude morphologique des Armillariass. str. à anneau" [Morphological study of Armillariasensu stricto with rings]. Bulletin de la Société Mycologique de France (in French). 98: 87–124.
^Barla J (1887). "Champignons des Alpes-Maritimes" [Mushrooms of the Alpes-Maritimes]. Bulletin de la Société Mycologique de France (in French). 3: 142–43.
^Marxmüller H (1987). "Quelques remarques complémentaires sur les Armillaires annelées" [Some complementary remarks on ringed Armillarias]. Bulletin de la Société Mycologique de France (in French). 103: 137–56.
^Antonín V (1990). "Studies in annulate species of the genus Armillaria–III. Species described by Josef Velenovský". Acta Musei Moraviae: Scientiae Naturales. 75: 129–32.
^"Armillaria gallica". MycoBank. International Mycological Association. Retrieved 2010-02-16.
^Anderson JB, Stasovski E (1992). "Molecular phylogeny of northern hemisphere species of Armillaria". Mycologia. 84 (4): 505–16. doi:10.2307/3760315. JSTOR3760315.
^ abGlare PGW, ed. (1982) [1976]. Oxford Latin Dictionary (combined ed.). Oxford, UK: Clarendon Press. ISBN0-19-864224-5. ss. vv. "Gallia", p. 753; "bulbosus", p. 244.
^ abStearn WT (1973). Botanical Latin (2nd annot. and rev. ed.). Newton Abbot: David & Charles. pp. 221, 396.
^ abFox RTV (2000). "Biology and life cycle". In Fox RTV (ed.). Armillaria Root Rot: Biology and Control of Honey Fungus. Andover, Hampshire, UK: Intercept. pp. 5–9. ISBN978-1-898298-64-9.
^ abcAntonín V, Tomšovský M, Sedlák P, Májek T, Jankovský L (2009). "Morphological and molecular characterization of the Armillaria cepistipes – A. gallica complex in the Czech Republic and Slovakia". Mycological Progress. 8 (3): 259–71. doi:10.1007/s11557-009-0597-1. S2CID6427314.
^Dervilla MX, Coveney DJ, Fukuda N (1986). "New sesquiterpene aryl esters from Armillaria mellea". Journal of Natural Products. 49 (1): 111–16. doi:10.1021/np50043a013.
^Peipp H, Sonnenbichler J (1992). "Secondary fungal metabolites and their biological-activities, II. Occurrence of antibiotic compounds in cultures of Armillaria ostoyae growing in the presence of an antagonistic fungus or host plant-cells". Biological Chemistry Hoppe-Seyler. 373 (8): 675–83. doi:10.1515/bchm3.1992.373.2.675. PMID1418682.
^Peabody DC, Peabody RB (1985). "Widespread haploidy in monokaryotic cells of mature basidiocarps of Armillaria bulbosa, a member of the Armillaria mellea complex". Experimental Mycology. 9 (3): 212–20. doi:10.1016/0147-5975(85)90017-9.
^Peabody RB, Peabody DC, Sicard KM (2000). "A genetic mosaic in the fruiting stage of Armillaria gallica". Fungal Genetics and Biology. 29 (2): 72–80. doi:10.1006/fgbi.2000.1187. PMID10919376.
^Peabody DC, Peabody RB, Tyrrell MG, Towle MJ, Johnson EM (2003). "Phenotypic plasticity and evolutionary potential in somatic cells of Armillaria gallica". Mycological Research. 107 (Pt 4): 408–12. doi:10.1017/S0953756203007433. PMID12825512.
^Peabody RB, Peabody DC, Tyrrell MG, Edenburn-McQueen E, Howdy RP, Semelrath KM (2005). "Haploid vegetative mycelia of Armillaria gallica show among-cell-line variation for growth and phenotypic plasticity". Mycologia. 97 (4): 777–87. doi:10.3852/mycologia.97.4.777. PMID16457347.
^Gatto A, Sicoli G, Luisi N (2009). "Genetic diversity within an Italian population of forest Armillaria gallica isolates as assessed by RAPD-PCR analysis". Journal of Phytopathology. 157 (2): 94–100. doi:10.1111/j.1439-0434.2008.01456.x.
^ abRishbeth J (1991). "Armillaria in an ancient broadleaved woodland". European Journal of Forest Pathology. 21 (4): 239–49. doi:10.1111/j.1439-0329.1991.tb00975.x.
^Rizzo DM, Blanchette RA, May G (1995). "Distribution of Armillaria ostoyae genets in a Pinus resinosa-Pinus banksiana forest". Canadian Journal of Botany. 73 (5): 776–87. doi:10.1139/b95-085.
^Saville BJ, Yoell H, Anderson JB (1996). "Genetic exchange and recombination in populations of the root-infecting fungus Armillaria gallica". Molecular Evolution. 5 (4): 485–97. doi:10.1046/j.1365-294x.1996.00115.x. PMID8794559. S2CID221956735.
^Hodnett B, Anderson JB (2000). "Genomic stability of two individuals of Armillaria gallica". Mycologia. 92 (5): 894–99. doi:10.2307/3761585. JSTOR3761585.
^Ota Y, Sotome K, Hasegawa E (2009). "Seven Armillaria species identified from Hokkaido Island, northern Japan". Mycoscience. 50 (6): 442–47. doi:10.1007/s10267-009-0505-1. S2CID85249295.
^Guillaumin JJ, Mohammed C, Anselmi R, Courtecuisse R, Gregory SC, Holdenrieder O, Intini M, Lung B, Marxmüller H, Morrison D, Rishbeth J, Termorshuizen AJ, Tirró A, Van Dam B (1993). "Geographical distribution and ecology of the Armillaria species in western Europe". European Journal of Forest Pathology. 23 (3): 321–41. doi:10.1111/j.1439-0329.1994.tb00978.x.
^Keča N, Karadžić D, Woodward S (2009). "Ecology of Armillaria species in managed forests and plantations in Serbia". Forest Pathology. 39 (4): 217–31. doi:10.1111/j.1439-0329.2008.00578.x.
^Baumgartner K, Rizzo DM (2001). "Distribution of Armillaria species in California". Mycologia. 93 (5): 821–30. doi:10.2307/3761748. JSTOR3761748.
^Brazee NJ, Wick RL (2009). "Armillaria species distribution on symptomatic hosts in northern hardwood and mixed oak forests in western Massachusetts". Forest Ecology and Management. 258 (7): 1605–12. doi:10.1016/j.foreco.2009.07.016.
^Qin GF, Zhao J, Tian SM, Hantula J (2001). "Genetic diversity and molecular identification of Northern Hemisphere species of Armillaria gallica". Scientia Silvae Sinicae (in Chinese). 37 (2): 61–68.
^Kelley MB, Fierke MK, Stephen FM (2009). "Identification and distribution of Armillaria species associated with an oak decline event in the Arkansas Ozarks". Forest Pathology. 39 (6): 397–404. doi:10.1111/j.1439-0329.2009.00600.x.
^Schnabel G, Bussey KE, Bryson PK (2005). "First report of Armillaria gallica causing Armillaria root rot in Daylily in South Carolina". Plant Disease. 89 (6): 683. doi:10.1094/PD-89-0683A. PMID30795400.
^Prodorutti D, Vanblaere T, Gobbin D, Pellegrini A, Gessler C, Pertot I (2009). "Genetic diversity of Armillaria spp. infecting highbush blueberry in Northern Italy (Trentino region)". Phytopathology. 99 (6): 651–58. doi:10.1094/PHYTO-99-6-0651. PMID19453223.
^Aguín-Casal O, Sáinz-Osés MJ, Mansilla-Vázquez JP (2003). "Armillaria species infesting vineyards in northwestern Spain". European Journal of Plant Pathology. 110 (7): 683–87. doi:10.1023/B:EJPP.0000041553.98879.51. S2CID2135912.
^"Armillaria gallica". Insects and Diseases of Canadian Forests. Canadian Forest Service. Archived from the original on 2011-07-06. Retrieved 2010-02-18.
^Dumas MT, Boyonoski NW (1992). "Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species of Trichoderma". European Journal of Forest Pathology. 22 (6–7): 379–83. doi:10.1111/j.1439-0329.1992.tb00310.x.
^Czederpiltz DL, Volk TJ, Burdsall HH Jr (2001). "Field observations and inoculation experiments to determine the nature of the carpophoroids associated with Entoloma abortivum and Armillaria". Mycologia. 93 (5): 841–51. doi:10.2307/3761750. JSTOR3761750. S2CID44233775.
Czech athlete For the Czech ice hockey player, see Tomáš Dvořák (ice hockey). For the contemporary composer, see Floex. This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (January 2019) (Learn how and when to remove this template message) Tomáš Dvořák Tomáš Dvořák Medal record Men's athletics Representing Cz...
2007 American filmThe GrandPromotional posterDirected byZak PennWritten byZak Penn Matt BiermanProduced byJeff BowlerStarring Woody Harrelson Cheryl Hines David Cross Chris Parnell Richard Kind Dennis Farina Werner Herzog Ray Romano CinematographyAnthony HardwickEdited byAbby SchwarzwalderMusic byStephen EndelmanDistributed byAnchor Bay EntertainmentRelease dates June 7, 2007 (2007-06-07) (CineVegas International Film Festival) March 21, 2008 (2008-03-21) ...
SMK Bahrul Maghfiroh PagelaranInformasiDidirikan2012JenisSekolah SwastaAkreditasiCMaskot-Kepala SekolahSholihin SE, Spd.iKetua Komite-Jumlah kelas-Jurusan atau peminatanTeknik Komputer dan Jaringan(TKJ), Teknik Bisnis Sepeda MotorRentang kelasX, XI, XIIKurikulumKurikulum 2013Jumlah siswa-NEM terendah-NEM tertinggi-Nilai masuk rata-rata-AlamatLokasiJl. Raya Tirtasari No.5, Desa Sukaratu, Kecamatan Pagelaran, 35375, Kabupaten Pringsewu, Lampung, IndonesiaTel./Faks.(0729) ...
خافيير إسبينوسا معلومات شخصية الميلاد 19 سبتمبر 1992 (العمر 31 سنة)طلبيرة الطول 1.74 م (5 قدم 9 بوصة) مركز اللعب وسط الجنسية إسبانيا معلومات النادي النادي الحالي أيك لارنكا الرقم 23 مسيرة الشباب سنوات فريق 2005–2011 برشلونة المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2010–20...
سفارة السويد في جنوب أفريقيا السويد جنوب أفريقيا الإحداثيات 25°44′54″S 28°14′18″E / 25.74846°S 28.2382°E / -25.74846; 28.2382 البلد جنوب إفريقيا المكان بريتوريا الاختصاص جنوب إفريقيا، وبوتسوانا[1]، وناميبيا[1]، وليسوتو[1] الموقع الالكتروني الموق�...
Cet article concerne la tactique militaire. Pour le film, voir Écran de fumée (téléfilm). Cet article est une ébauche concernant le domaine militaire. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Écran de fuméePrésentationType Tactique militairemodifier - modifier le code - modifier Wikidata Soldat et véhicule de l'armée polonaise avançant masqués par un écran de fumée lors d'un exercice en ...
Cet article traite de la saison 2018 de tennis masculin. Pour la saison féminine, voir Saison 2018 de la WTA. Pour des articles plus généraux, voir 2018 en tennis et ATP World Tour. Saison 2018 de l'ATP Généralités Durée de la saison Du 1er janvier 2018au 25 novembre 2018 Nombre de tournois 67 No1 en simple Novak Djokovic No1 en double Mike Bryan Vainqueurs des tournois majeurs Open d'Australie Roland-Garros Roger Federer Rafael Nadal Wimbledon US Open Novak Djokovic Novak Djokovi...
American businessman and investor (born 1947) This article is about the investor. For his namesake building, see New York Public Library Main Branch. Stephen SchwarzmanSchwarzman in 2019Chairman of the Strategic and Policy ForumIn officeJanuary 20, 2017 – August 16, 2017PresidentDonald TrumpPreceded byPosition establishedSucceeded byPosition abolished Personal detailsBornStephen Allen Schwarzman (1947-02-14) February 14, 1947 (age 77)Philadelphia, Pennsylvania, USPolitical par...
1990 studio album by John DenverChristmas, Like a LullabyDelta Re-releaseStudio album by John DenverReleasedDecember 1990GenreChristmasLength40:06LabelWindstar RecordsProducerRoger Nichols, John DenverJohn Denver chronology The Flower That Shattered the Stone(1990) Christmas, Like a Lullaby(1990) Different Directions(1991) Professional ratingsReview scoresSourceRatingAllmusic[1] Christmas, Like a Lullaby is the 24th studio album by American singer-songwriter John Denver relea...
Israeli political party (1984-) For other uses, see Shas (disambiguation). Shas ש״סLeaderAryeh DeriSpiritual LeaderVacantFoundersElazar ShachOvadia YosefFounded1984; 40 years ago (1984)Split fromAgudat YisraelHeadquartersJerusalemIdeologyPopulism[1]Religious Zionism[2]Social conservatism[3][4]Religious conservatism[5]Social democracy[6][7]Sephardic and Mizrahi interestsHaredi interests[8][9 ...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يناير 2021) تاريخ علم الخرائطالتأثيراتأحد جوانب الخرائطية فرع من تاريختاريخ الجغرافي�...
1974 Faroese general election ← 1970 7 November 1974 1978 → Party Leader % Seats +/– Social Democratic Atli Dam 25.81 7 0 Republic Signar Hansen 22.46 6 0 People's Hákun Djurhuus 20.49 5 0 Union Pauli Ellefsen 19.13 5 −1 Self-Government Hilmar Kass 7.20 2 +1 Progress Kjartan Mohr 2.45 1 0 This lists parties that won seats. See the complete results below. Prime Minister before Prime Minister after Atli DamSocial Democratic Atli DamSocial Democratic Pol...
William Jacob Crystal (lahir 14 Maret 1948) merupakan seorang aktor dan sutradara berkebangsaan Amerika Serikat yang memenangkan nominasi Golden Globe dan Emmy Award. Dia dilahirkan di Long Beach, New York. Dia mulai berkarier di dunia film sejak tahun 1977. Filmografi Soap - (1977-1981) as Jodie Dallas Rabbit Test - (1978) as Lionel Carpenter Animalympics - (1980) (voiceover) as Lodge Turkell This Is Spinal Tap - (1984) as Morty the Mime Running Scared - (1986) as Danny Costanzo The Princess...
Warning symbol on locations or products Danger of death redirects here. For other uses, see Near-death (disambiguation). Skull and crossbones, a common symbol for poison and other sources of lethal danger (GHS hazard pictograms) Hazard symbols or warning symbols are recognisable symbols designed to warn about hazardous or dangerous materials, locations, or objects, including electromagnetic fields, electric currents; harsh, toxic or unstable chemicals (acids, poisons, explosives); and radioac...
Swedish heavy metal band This article is about the Swedish metal band. For other uses, see Amaranth (disambiguation). AmarantheAmaranthe performing at Wacken Open Air 2023Background informationAlso known asAvalanche (2008–2009)OriginGothenburg, SwedenGenres Metalcore melodic death metal power metal symphonic metal pop metal Years active2008–presentLabels Spinefarm Universal Nuclear Blast Members Olof Mörck Elize Ryd Morten Løwe Sørensen Johan Andreassen Nils Molin Mikael Sehlin Past me...
Crise da abdicação de Eduardo VIII Crise da abdicação de Eduardo VIIIInstrumento de Abdicação, assinado por Eduardo VIII e seus três irmãos Participantes Eduardo VIIIWallis, Duquesa de Windsor Localização Reino Unido Data 1936 Resultado abdicação de Eduardo VIII do trono britânico ascensão de Jorge VI do Reino Unido A crise da abdicação, ocorrida em 1936, foi uma crise constitucional no Império Britânico provocada pela proposta do rei Eduardo VIII de se casar com Wallis Sim...
Interdisciplinary research discipline Part of a series onEconomics History Outline Index Branches and classifications Applied Econometrics Heterodox International Micro / Macro Mainstream Mathematical Methodology Political JEL classification codes Concepts, theory and techniques Economic systems Economic growth Market National accounting Experimental economics Computational economics Game theory Operations research Middle income trap Industrial complex By application Agricultural Behavioral B...