Archdeacon of Canterbury

The Archdeacon of Canterbury is a senior office-holder in the Diocese of Canterbury (a division of the Church of England Province of Canterbury). Like other archdeacons, they are an administrator in the diocese at large (having oversight of parishes in roughly one-third of the diocese) and is a canon residentiary of the cathedral.

History

The Archdeacon of Canterbury has an additional role, traditionally serving as the Archbishop of Canterbury's representative at enthronement ceremonies for new diocesan bishops in his province. At these services, the archdeacon reads the archbishop's mandate and, taking the new bishops by the hand, conducts them to their episcopal throne.

The archdeaconry and archdeacon of Canterbury have been in constant existence since the 11th century. There was one short-lived attempt to split the role in the 12th century. In modern times, the archdeaconry has been split twice: creating Maidstone archdeaconry in 1841 and Ashford archdeaconry in 2011.

Composition

The archdeaconry covers approximately the north-east corner of the diocese. As of 2012, the archdeaconry of Canterbury consists the following deaneries in the Diocese of Canterbury:

List of archdeacons

References

  1. ^ Guérard, Louis (1903). Documents pontificaux sur la Gascogne d'après les archives du Vatican. Pontificat de Jean XXII (1316-1334) (in French). Vol. 2. Paris / Auch: Honoré Champion / Léonce Cocharaux. pp. 95-97.
  2. ^ "Pakington, William" . Dictionary of National Biography. London: Smith, Elder & Co. 1885–1900.
  3. ^ "EDEN, Rt. Rev. George Rodney". Who's Who & Who Was Who. Vol. 1920–2008 (December 2007 online ed.). A & C Black. Retrieved 27 December 2012. (Subscription or UK public library membership required.)
  4. ^ "Gazette". Church Times. No. 7962. 23 October 2015. p. 33. ISSN 0009-658X.
  5. ^ Diocese of Canterbury — Notices about people and places (Accessed 10 January 2016)
  6. ^ Canterbury Cathedral — New Archdeacon of Canterbury (Accessed 8 February 2017)
  7. ^ "Services and Music List July 2022" (PDF). Canterbury Cathedral. Archived from the original (PDF) on 31 July 2022. Retrieved 31 July 2022.

Sources

Read other articles:

Surili Jawa Presbytis comata Status konservasiGentingIUCN18125 TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoPrimatesFamiliCercopithecidaeGenusPresbytisSpesiesPresbytis comata (Desmarest, 1822) Tata namaProtonimSemnopithecus comatus Distribusi lbs Surili jawa[2] (Presbytis comata) adalah spesies monyet Dunia Lama terancam yang endemik pada sebagian pulau Jawa, Indonesia. Hewan ini menyukai hutan primer dan penghuni pohon (arboreal). Terdapat dua subspesies surili jawa: Presby...

 

 

غليبيتشيفو الإحداثيات 60°27′14″N 28°43′09″E / 60.453888888889°N 28.719166666667°E / 60.453888888889; 28.719166666667  تقسيم إداري  البلد روسيا[2][1]  معلومات أخرى 188917  رمز الهاتف 81378  رمز جيونيمز 561251  تعديل مصدري - تعديل   غليبيتشيفو (بالروسية: Глебычево) هي مدينة في مقاطعة...

 

 

بول إليوت معلومات شخصية الميلاد 18 مارس 1964 (العمر 60 سنة)لندن الطول 6 قدم 2 بوصة (1.88 م)[1][1] مركز اللعب مدافع الجنسية إنجليزي المسيرة الاحترافية1 سنوات فريق مشاركات (أهداف) 1980–1983 تشارلتون أثلتيك 63 (1) 1983–1985 لوتون تاون 66 (4) 1985–1987 أستون فيلا 57 (7) 1987–1989 بيزا 23 (1) 1989–199...

Divostin Дивостин Le monastère de Divostin Administration Pays Serbie Province Serbie centrale Région Šumadija District Šumadija Municipalité Stanovo Code postal 34 204 Démographie Population 411 hab. (2011) Géographie Coordonnées 44° 01′ 00″ nord, 20° 51′ 00″ est Altitude 239 m Localisation Géolocalisation sur la carte : Serbie Divostin Géolocalisation sur la carte : Serbie Divostin modifier  Divostin (e...

 

 

Former urban district in Middlesex, UK Ruislip-NorthwoodUrban districtRuislip-Northwood within Middlesex in 1961Area • 1911/19316,585 acres (26.6 km2) • 19616,584 acres (26.6 km2) • Coordinates51°35′28″N 0°25′48″W / 51.591°N 0.430°W / 51.591; -0.430 Population • 19116,217 • 193116,042 • 196172,791 Density • 19110.94/acre • 19312.44/acre • 19...

 

 

Main building in Japanese buddhist temples This article is about the Main Hall in Japanese Buddhist temple. For the Main Hall in Chinese Buddhist temple, see Mahavira Hall. Tōdai-ji's latest Daibutsuden reconstructed in 1709 is a 9x7-bay kondō (Japan's National Treasure) Main hall or Main Temple is the building within a Japanese Buddhist monastery compound (garan) which enshrines the main object of veneration.[1] Because the various denominations deliberately use different terms, th...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

 

Reform Jewish synagogue in Washington, D.C. Washington Hebrew CongregationWashington Hebrew synagogue in 2014ReligionAffiliationReform JudaismEcclesiastical or organizational statusSynagogueLeadershipRabbi Susan ShankmanRabbi Aaron MillerRabbi Eliana Fischel (Associate)StatusActiveLocationLocation3935 Macomb Street NW, Washington, D.C. 20016CountryUnited StatesLocation in Washington, D.C.Geographic coordinates38°56′01″N 77°04′41″W / 38.9337°N 77.0781°W / 38...

 

 

Universitas Teknologi Hefei合肥工业大学Kampus utama Universitas Teknologi HefeiMoto厚德、笃学、崇实、尚新 (Berbudi luhur, giat belajar, mencari kebenaran dan berinovasi) pursuing virtue and knowledge, seeking truth and innovationJenisUniversitas negeriDidirikan1945PresidenLiang LiangStaf administrasi3.768Jumlah mahasiswa25.500LokasiHefei, Anhui, Republik Rakyat TiongkokKampusUrban, 3 kampusSitus webwww.hfut.edu.cn Universitas Teknologi Hefei (Hanzi sederhana: 合肥工业...

淡江高峰塔倒塌事件高峰塔B座、C座公寓,與倒塌的A座公寓結構類似 (2012)日期1993年12月11日,​30年前​(1993-12-11)时间下午1时35分(马来西亚标准时间,周六)地点 马来西亚雪兰莪淡江(英语:Ulu Klang)山景花园(英语:Taman Hillview)高峰塔坐标3°10′33.4″N 101°45′42.1″E / 3.175944°N 101.761694°E / 3.175944; 101.761694坐标:3°10′33.4″N 101°45′42.1″E&...

 

 

American judge For the 15th-century academic, see John Marten (academic). J. Thomas MartenSenior Judge of the United States District Court for the District of KansasIn officeMay 1, 2017 – May 1, 2021Chief Judge of the United States District Court for the District of KansasIn officeApril 22, 2014 – May 1, 2017Preceded byKathryn H. VratilSucceeded byJulie A. RobinsonJudge of the United States District Court for the District of KansasIn officeJanuary 4, 1996 – Ma...

 

 

Body of salt water off the coast of Kyūshū, Japan A NASA satellite image of the Ariake Sea in 2007 The Ariake Sea (有明海, Ariake-kai) is a body of salt water surrounded by Fukuoka, Saga, Nagasaki, and Kumamoto Prefectures, all of which lie on the island of Kyūshū in Japan. It is the largest bay in Kyūshū. Its deepest point is only about 50 meters (165 ft) deep, and extreme tides exceed 4 meters (13 ft), covering roughly 1,700 square kilometres (660 sq mi). Isahaya Bay...

Lotus Cars LimitedLogo Stato Regno Unito Forma societariaAzienda privata Fondazione1952 a Hethel Fondata daColin Chapman Sede principaleHethel GruppoGeely Holding Group Persone chiavePhil Popham (AD), Daniel Donghui Li (Presidente) SettoreAutomobilistico ProdottiAutovetture Fatturato11,2 milioni di £ (2017) Dipendenti1487 (2017) Slogan«Light is Right» Sito webwww.lotuscars.com Modifica dati su Wikidata · Manuale Lotus è una casa automobilistica britannica, attualmente di pr...

 

 

العلاقات الكندية الهندوراسية كندا هندوراس   كندا   هندوراس تعديل مصدري - تعديل   العلاقات الكندية الهندوراسية هي العلاقات الثنائية التي تجمع بين كندا وهندوراس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة كن�...

 

 

NASCAR Seri Piala Winston 1988 Sebelum: 1987 Sesudah: 1989 Bill Elliott (foto 2017) sebagai juara musim 1988. NASCAR Seri Piala Winston 1988 merupakan musim NASCAR Seri Piala Winston. Musim ini berlangsung dari bulan Februari 1988 lewat Daytona 500 di Daytona International Speedway dan berakhir pada bulan November dalam di Atlanta Motor Speedway. Di musim ini Bill Elliott keluar sebagai juara umum. Klasemen akhir Bill Elliott – 4488 Rusty Wallace – 4464 Dale Earnhardt – ...

2004 studio album by Eliane EliasDreamerStudio album by Eliane EliasReleasedMay 4, 2004StudioAvatar, New York CityGenreContemporary JazzLength53:23LabelBluebirdProducerEliane Elias, Marc Johnson, Steve RodbyEliane Elias chronology Brazilian Classics(2003) Dreamer(2004) Around the City(2006) Professional ratingsReview scoresSourceRatingAllMusic[1]The Penguin Guide to Jazz Recordings[2] Dreamer is the sixteenth studio album by Brazilian jazz pianist Eliane Elias. It was ...

 

 

Порносайт  Порносайт у Вікісховищі Порноса́йт — інтернет-сайт, мета якого — платне або безкоштовне розповсюдження порнографії. Порносайти зазвичай поділяються за напрямками: для кожної сексуальної орієнтації, за різними сексуальними інтересами (фетишисти, BDSM...

 

 

Engineering accomplishments of the ancient Roman civilization Reconstruction of a 10.4 m (34 ft) high Roman Polyspastos in Germany The ancient Romans were famous for their advanced engineering accomplishments. Technology for bringing running water into cities was developed in the east,[clarification needed] but transformed by the Romans into a technology inconceivable in Greece. The architecture used in Rome was strongly influenced by Greek and Etruscan sources. Roman roads ...

The Amityville Horror Edisi pertamaPengarangJay AnsonNegaraAmerika SerikatBahasaInggrisGenreNovel hororPenerbitPrentice HallTanggal terbitSeptember 1977Jenis mediaPrint (Hardback & Paperback) The Amityville Horror - A True Story adalah sebuah buku yang ditulis oleh Jay Anson, yang diterbitkan pada bulan September 1977. Buku ini juga menjadi dasar satu rangkaian film yang dibuat antara 1979 hingga 2005. Cerita tersebut berdasarkan kisah nyata, tetapi telah menyulut masalah dan ko...

 

 

Discrete probability distribution CategoricalParameters k > 0 {\displaystyle k>0} number of categories (integer) p 1 , … , p k {\displaystyle p_{1},\ldots ,p_{k}} event probabilities ( p i ≥ 0 , Σ p i = 1 ) {\displaystyle (p_{i}\geq 0,\,\Sigma p_{i}=1)} Support x ∈ { 1 , … , k } {\displaystyle x\in \{1,\dots ,k\}} PMF (1) p ( x = i ) = p i {\displaystyle p(x=i)=p_{i}} (2) p ( x ) = p 1 [ x = 1 ] ⋯ p k [ x = k ] {\displaystyle p(x)=p_{1}^{[x=1]}\...