Approximation error

Graph of (blue) with its linear approximation (red) at a = 0. The approximation error is the gap between the curves, and it increases for x values further from 0.

Approximation error refers to the difference between an exact value and its approximation. This discrepancy can be quantified in two ways: as absolute error, which measures the numerical difference, and as relative error, which expresses the absolute error in relation to the true value. By understanding both types of errors, we can better assess the accuracy of our estimates and measurements.

Approximation errors can occur due to various factors, often stemming from limitations in measurement tools or computing precision. For example, if a piece of paper measures exactly 4.53 cm, but your ruler only marks the nearest 0.1 cm, you’d record it as 4.5 cm. Similarly, in computing, limitations in machine precision mean numbers are sometimes rounded, leading to small discrepancies. These errors, while often minor, can affect the accuracy of calculations, especially when accumulated over multiple steps.

In the mathematical field of numerical analysis, the numerical stability of an algorithm indicates the extent to which errors in the input of the algorithm will lead to large errors of the output; numerically stable algorithms do not yield a significant error in output when the input is malformed and vice versa.[1]

Formal definition

Given some value v, we say that vapprox approximates v with absolute error ε>0 if [2][3]

where the vertical bars denote the absolute value.

We say that vapprox approximates v with relative error η>0 if

.

If v ≠ 0, then

.

The percent error (an expression of the relative error) is [3]

An error bound is an upper limit on the relative or absolute size of an approximation error.[4]

Examples

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

For example, if the exact value is 50 and we approximate it as 49.9, the absolute error is 0.1. The relative error, calculated as 0.1/50, equals 0.002, or 0.2%.

In a practical scenario, consider measuring liquid in a 6 mL beaker. If the reading shows 5 mL, but the correct value is 6 mL, the percent error is 61​≈16.7%. This kind of error shows how even small discrepancies can translate into significant percent errors, especially with smaller measurements!

The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 while in the second it is only 0.000003.

There are two important aspects of relative error to remember. First, relative error becomes undefined when the exact value is zero, as this would place zero in the denominator. Second, relative error is meaningful only when the values are measured on a ratio scale—one that has a true zero. This is because relative error is sensitive to the measurement units. For instance, a temperature measurement with an absolute error of 1°C and a true value of 2°C has a relative error of 0.5. However, on the Kelvin scale, the same 1 K error with a true value of 275.15 K (equivalent to 2°C) results in a much smaller relative error of 0.00363.

Comparison

Statements about relative errors are sensitive to addition of constants, but not to multiplication by constants. For absolute errors, the opposite is true: are sensitive to multiplication by constants, but not to addition of constants.[5]: 34 

Polynomial-time approximation of real numbers

We say that a real value v is polynomially computable with absolute error from an input if, for every rational number ε>0, it is possible to compute a rational number vapprox that approximates v with absolute error ε, in time polynomial in the size of the input and the encoding size of ε (which is O(log(1/ε)). Analogously, v is polynomially computable with relative error if, for every rational number η>0, it is possible to compute a rational number vapprox that approximates v with relative error η, in time polynomial in the size of the input and the encoding size of η.

If v is polynomially computable with relative error (by some algorithm called REL), then it is also polynomially computable with absolute error. Proof. Let ε>0 be the desired absolute error. First, use REL with relative error η=1/2; find a rational number r1 such that |v-r1| ≤ |v|/2, and hence |v| ≤ 2 |r1|. If r1=0, then v=0 and we are done. Since REL is polynomial, the encoding length of r1 is polynomial in the input. Now, run REL again with relative error η=ε/(2 |r1|). This yields a rational number r2 that satisfies |v-r2| ≤ ε|v| / (2r1) ≤ ε, so it has absolute error ε as wished.[5]: 34 

The reverse implication is usually not true. But, if we assume that some positive lower bound on |v| can be computed in polynomial time, e.g. |v| > b > 0, and v is polynomially computable with absolute error (by some algorithm called ABS), then it is also polynomially computable with relative error, since we can simply call ABS with absolute error ε = η b.

An algorithm that, for every rational number η>0, computes a rational number vapprox that approximates v with relative error η, in time polynomial in the size of the input and 1/η (rather than log(1/η)), is called an FPTAS.

Instruments

In most indicating instruments, the accuracy is guaranteed to a certain percentage of full-scale reading. The limits of these deviations from the specified values are known as limiting errors or guarantee errors.[6]

Generalizations

The definitions can be extended to the case when and are n-dimensional vectors, by replacing the absolute value with an n-norm.[7]

See also

References

  1. ^ Weisstein, Eric W. "Numerical Stability". mathworld.wolfram.com. Retrieved 2023-06-11.
  2. ^ Weisstein, Eric W. "Absolute Error". mathworld.wolfram.com. Retrieved 2023-06-11.
  3. ^ a b "Absolute and Relative Error | Calculus II". courses.lumenlearning.com. Retrieved 2023-06-11.
  4. ^ "Approximation and Error Bounds". www.math.wpi.edu. Retrieved 2023-06-11.
  5. ^ a b Grötschel, Martin; Lovász, László; Schrijver, Alexander (1993), Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, doi:10.1007/978-3-642-78240-4, ISBN 978-3-642-78242-8, MR 1261419
  6. ^ Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4
  7. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.

Read other articles:

Yandex.TaxiNama dagangYandex.TaxiJenisTerbatas publikIndustriTeknologi informasiTransportasiDidirikan26 Oktober 2011Pendiri Daniil Shuleyko Kantorpusat RusiaWilayah operasi Rusia Armenia Belarus Estonia Finlandia Georgia Ghana Israel Pantai Gading Kazakhstan Kirgizstan Latvia Lituania Moldova Norwegia Rumania Serbia UzbekistanTokohkunci Daniil Shuleyko (CEO) PemilikYandexUberSitus webtaxi.yandex.com...

Isabel Ice Información personalNombre de nacimiento Claire MarshOtros nombres Isobel Ice, Isabel, Isabell, Isabella Ice, Isabelle Ice, Isobel, IsobelleNacimiento 15 de abril de 1982 (41 años)[1]​Cardiff, GalesNacionalidad BritánicaEtnia CaucásicaLengua materna Inglés Características físicasAltura 1,60 m (5′ 3″)Peso 53 kg (117 lb)Medidas 34D-24-35Ojos VerdesCabello Rubio, marrónPecho natural SíInformación profesionalOcupación Actriz pornográficaAños a...

Wappen in einem Missale des 15. Jahrhunderts Friedrich Graf von Schaunberg († 4. Oktober 1494 in Salzburg) war als Friedrich V. Erzbischof von Salzburg. Inhaltsverzeichnis 1 Herkunft und Jugend 2 Friedrich V. als Erzbischof 3 Literatur 4 Einzelnachweise Herkunft und Jugend Friedrich entstammte dem letzten damals noch nicht ausgestorbenen edelfreien altösterreichischen Adelsgeschlecht der Schaunberger. Diese benannten sich nach der damaligen Burg und heutigen Burgruine Schaunberg bei Eferdi...

  لمعانٍ أخرى، طالع كارل بيرسون (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) كارل بيرسون معلومات شخصية الميلاد 14 ديسمبر 1919  تاريخ الوفاة 6 نوفمبر 2014 (94 سنة)   مواطنة السويد  مناصب الحي�...

Rabi Mordechai WilligPosisiRabbiSinagogeIsrael Muda RiverdalePosisiRosh YeshivaYeshivaRIETSPenjelasan pribadiLahir25 April 1947 (umur 76)New York CityKewarganegaraan United States of AmericaDenominasiOrtodoksTempat tinggalRiverdale, New YorkSemichaRIETS Mordechai Willig (lahir 25 April 1947) adalah seorang rabi dan rosh yeshiva Ortodoks di Universitas Yeshiva, Washington Heights, Manhattan. Ia sering kali disebut oleh para muridnya sebagai Ramu (רמו), yang merupakan trnaslit...

Cirsium ukranicum Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Евдикоти (Eudicots) Клада: Айстериди (Asterids) Порядок: Айстроцвіті (Asterales) Родина: Айстрові (Asteraceae) Рід: Осот (Cirsium) Вид: C. ukranicum Біноміальна назва Cirsium ukranicu...

Genus of butterflies Kanetisa Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Nymphalidae Genus: KanetisaMoore, 1893 Species: K. digna Binomial name Kanetisa digna(Marshall, 1883) Synonyms[1] Hipparchia digna Marshall, 1883 Kanetisa digna perdigna Clench & Shoumatoff, 1956 Kanetisa is a monotypic butterfly genus from the subfamily Satyrinae in the family Nymphalidae. Its single species, Kanetisa digna,...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Joyodrono (Jayadrana) adalah salah satu tokoh yang berperan membantu Raden Batoro Katong dalam membangun Ponorogo. Joyodrono adalah kakak dari Joyodipo. Keduanya merupakan abdi dalem dari Prabu Brawijaya V.[1] Joyodrono dan adiknya, Joyodipo me...

AP3M1 المعرفات الأسماء المستعارة AP3M1, adaptor related protein complex 3 mu 1 subunit, adaptor related protein complex 3 subunit mu 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 610366 MGI: MGI:1929212 HomoloGene: 22693 GeneCards: 26985 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني المكونات الخلوية • lysosomal membrane• ج�...

Union Army general Ulysses DoubledayBorn(1824-08-31)August 31, 1824Auburn, New YorkDiedFebruary 11, 1893(1893-02-11) (aged 68)Tryon, North CarolinaBuriedWoodlawn Cemetery, New YorkAllegianceUnited States of AmericaService/branchUnion ArmyYears of service1862–1865Rank Colonel Brevet Brigadier GeneralUnit4th New York Heavy Artillery3rd U.S.C.T. InfantryCommands held45th U.S.C.T. InfantryRelationsUlysses F. Doubleday (father) Abner Doubleday (brother) Thomas D. Doubleday (brother...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (June 2022) (Learn how and when to remove this template message) This article is an orphan, as no other articles link to it. Please introduce links to...

Chinese military general and warlord (142-208) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Liu Biao – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Liu Biao劉表A Qing dynasty illustration of Liu BiaoGovernor of Jing Province (荊州牧)I...

Railway station in Hekinan, Aichi Prefecture, Japan Hekinan Station碧南駅Hekinan Station in March 2014General informationLocationNakamachi 5-48, Hekinan-shi, Aichi-ken 447-0846JapanCoordinates34°52′27″N 136°59′10″E / 34.8743°N 136.9861°E / 34.8743; 136.9861Operated by MeitetsuLine(s)■ Meitetsu Mikawa Line Distance39.8 kilometers from SanagePlatforms1 island platformOther informationStatusUnstaffedStation codeMU11WebsiteOfficial websiteHistoryOpenedFebr...

Annual parade in New York City NYC St. Patrick’s Day ParadeGlucksman Ireland House NYU and NYU Pipes and Drums march in the 2019 NYC St. Patrick's Day ParadeStatusActiveGenreParadeDate(s)17th MarchFrequencyAnnualLocation(s)New York City, New YorkCountryUnited StatesYears active261InauguratedMarch 17, 1762 (1762-03-17)Most recentMarch 17, 2023Next eventMarch 16, 2024Participants150,000[1]Attendance2,000,000Patron(s)St. Patrick, Patron Saint of Ireland.Organised bySt. P...

Nyasaland Volunteer ReserveA party of the Nyasaland Volunteer Reserve at Karonga, late 1914 or early 1915Active1901-unknownCountryNyasalandAllegianceBritish EmpireTypeInfantrySizeCirca 200 menNickname(s)Never Very ReliablesEngagements First World War (1914-18) East African campaign Chilembwe uprising (1915) Military unit The Nyasaland Volunteer Reserve (NVR) was a reserve infantry unit in the British protectorate of Nyasaland (modern-day Malawi). The British Central Africa Volunteer Reserve w...

1993 compilation album by PulpIntro – The Gift RecordingsCompilation album by PulpReleasedOctober 4th, 1993Recorded1992 – 1993GenreBritpop, indie rockLength40:12LabelIslandProducerSimon Hinkler, Mike Timm, Pulp, Ed BullerPulp chronology Separations(1992) Intro – The Gift Recordings(1993) His 'n' Hers(1994) Professional ratingsReview scoresSourceRatingAllmusic[1] Intro – The Gift Recordings is a compilation album by Pulp. It contains the band's three singles recorded fo...

Abandoned hotel in Ponce, Puerto Rico Hotel Ponce IntercontinentalFormer Hotel Ponce Intercontinental over the El Vigia Hill in Barrio Portugues Urbano, Ponce, Puerto RicoGeneral informationLocationPaseo de la Cruceta Ponce, Puerto RicoCoordinates18°1′17.4″N 66°37′14.59″W / 18.021500°N 66.6207194°W / 18.021500; -66.6207194Opening1 February 1960[1]Closed1975OwnerPonce Hotel Corporation (1957-1985)PRIDCO (1985-2006)CBC Development (2006-2018)Misla Hos...

U.S. presidential administration from 1909 to 1913 Presidency of William Howard TaftMarch 4, 1909 – March 4, 1913CabinetSee listPartyRepublicanElection1908SeatWhite House← Theodore RooseveltWoodrow Wilson → Seal of the president(1894–1945) This article is part of a series aboutWilliam Howard Taft Early life Family Bibliography Legacy 27th President of the United States Inauguration Presidency (timeline) Executive actions Foreign policy Taftian theory Domesti...

American garage house production and remix team Hardrive redirects here. For the computer equipment, see Hard disk drive. Masters at WorkMasters At Work in 2013Background informationAlso known asMAWKenLouSole FusionNuyorican SoulRiver OceanOriginNew York, New York, United StatesGenresHouse, garage, Nuyorican soulYears active1990–presentLabelsCutting Records (1993) MAW Records (1998–present)Tommy Boy EntertainmentGiant Step/Blue Thumb/GRP/MCA RecordsMembersLittle Louie VegaKenny Dope Gonza...

Charitable institution in Europe This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (August 2020) (Learn how and when to remove this template message) Robert Bosch Stiftung GmbHFormation1964FounderRobert BoschHeadquartersStuttgart, GermanyCEOBernhard StraubWebsitewww.bosch-stiftung.de Main office of the Robert Bosch...