α-keratin is a polypeptide chain, typically high in alanine, leucine, arginine, and cysteine, that forms a right-handed α-helix.[3][4] Two of these polypeptide chains twist together to form a left-handed helical structure known as a coiled coil. These coiled coil dimers, approximately 45 nm long, are bonded together with disulfide bonds, utilizing the many cysteine amino acids found in α-keratins.[2] The dimers then align, their termini bonding with the termini of other dimers, and two of these new chains bond length-wise, all through disulfide bonds, to form a protofilament.[5] Two protofilaments aggregate to form a protofibril, and four protofibrils polymerize to form the intermediate filament (IF). The IF is the basic subunit of α-keratins. These IFs are able to condense into a super-coil formation of about 7 nm in diameter, and can be type I, acidic, or type II, basic. The IFs are finally embedded in a keratin matrix that either is high in cysteine or glycine, tyrosine, and phenylalanine residues. The different types, alignments, and matrices of these IFs account for the large variation in α-keratin structures found in mammals.[6]
Biochemistry
Synthesis
α-keratin synthesis begins near focal adhesions on the cell membrane. There, the keratin filament precursors go through a process known as nucleation, where the keratin precursors of dimers and filaments elongate, fuse, and bundle together.[2] As this synthesis is occurring, the keratin filament precursors are transported by actin fibers in the cell towards the nucleus. There, the alpha-keratin intermediate filaments will collect and form networks of structure dictated by the use of the keratin cell as the nucleus simultaneously degrades.[7] However, if necessary, instead of continuing to grow, the keratin complex will disassemble into non-filamentous keratin precursors that can diffuse throughout the cell cytoplasm. These keratin filaments will be able to be used in future keratin synthesis, either to re-organize the final structure or create a different keratin complex. When the cell has been filled with the correct keratin and structured correctly, it undergoes keratin stabilization and dies, a form of programmed cell death. This results in a fully matured, non-vascular keratin cell.[8] These fully matured, or cornified, alpha-keratin cells are the main components of hair, the outer layer of nails and horns, and the epidermis layer of the skin.[9]
Properties
The property of most biological importance of alpha-keratin is its structural stability. When exposed to mechanical stress, α-keratin structures can retain their shape and therefore can protect what they surround.[10] Under high tension, alpha-keratin can even change into beta-keratin, a stronger keratin formation that has a secondary structure of beta-pleated sheets.[11] Alpha-keratin tissues also show signs of viscoelasticity, allowing them to both be able to stretch and absorb impact to a degree, though they are not impervious to fracture. Alpha-keratin strength is also affected by water content in the intermediate filament matrix; higher water content decreases the strength and stiffness of the keratin cell due to their effect on the various hydrogen bonds in the alpha-keratin network.[2]
Characterization
Type I and type II
Alpha-keratins proteins can be one of two types: type I or type II. There are 54 keratin genes in humans, 28 of which code for type I, and 26 for type II.[12] Type I proteins are acidic, meaning they contain more acidic amino acids, such as aspartic acid, while type II proteins are basic, meaning they contain more basic amino acids, such as lysine.[13] This differentiation is especially important in alpha-keratins because in the synthesis of its sub-unit dimer, the coiled coil, one protein coil must be type I, while the other must be type II.[2] Even within type I and II, there are acidic and basic keratins that are particularly complementary within each organism. For example, in human skin, K5, a type II alpha keratin, pairs primarily with K14, a type I alpha-keratin, to form the alpha-keratin complex of the epidermis layer of cells in the skin.[14]
Hard and soft
Hard alpha-keratins, such as those found in nails, have a higher cysteine content in their primary structure. This causes an increase in disulfide bonds that are able to stabilize the keratin structure, allowing it to resist a higher level of force before fracture. On the other hand, soft alpha-keratins, such as ones found in the skin, contain a comparatively smaller amount of disulfide bonds, making their structure more flexible.[1]
References
^ abG., Voet, Judith; W., Pratt, Charlotte (2016-02-29). Fundamentals of biochemistry : life at the molecular level. ISBN9781118918401. OCLC910538334.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Burkhard, Peter; Stetefeld, Jörg; Strelkov, Sergei V (2001). "Coiled coils: a highly versatile protein folding motif". Trends in Cell Biology. 11 (2): 82–88. doi:10.1016/s0962-8924(00)01898-5. PMID11166216.