Aleksei Shumskikh
|
Read other articles:
KaroKelurahanKantor Kelurahan KaroPeta lokasi Kelurahan KaroNegara IndonesiaProvinsiSumatera UtaraKotaPematangsiantarKecamatanSiantar SelatanKode Kemendagri12.72.04.1002 Kode BPS1273020005 Luas-Jumlah penduduk-Kepadatan- Tanda selamat datang di Kelurahan Karo Karo adalah salah satu kelurahan di Kecamatan Siantar Selatan, Pematangsiantar, Sumatera Utara, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Dat...
معرض الترفيه الإلكتروني 2014الشعارمعلومات عامةالنوع متعدد الاغراضتاريخ البداية يونيو 10, 2014تاريخ الانتهاء يونيو 12, 2014المبنى مركز مؤتمرات لوس أنجلوسالمكان لوس انجليسالبلد الولايات المتحدةالقادم معرض الترفيه الإلكتروني 2015 السابق معرض الترفيه الإلكتروني 2013 الحضور 48٬900 ا...
U.S. presidential election in Maryland Main article: 1992 United States presidential election 1992 United States presidential election in Maryland ← 1988 November 3, 1992 1996 → Nominee Bill Clinton George H. W. Bush Ross Perot Party Democratic Republican Independent Home state Arkansas Texas Texas Running mate Al Gore Dan Quayle James Stockdale Electoral vote 10 0 0 Popular vote 988,571 707,094 281,414 Percentage 49.80% 35.62% 14.18% County Re...
Untuk orang lain dengan nama yang sama, lihat David Cross (disambiguasi). David CrossCross, 2019Lahir4 April 1964 (umur 60)Roswell, Georgia, ASGenreSatir politik, komedi alternatif, komedi gelap, komedi sketsa, humor surrealSuami/istriAmber Tamblyn (m. 2012)Anak1Karya terkenal dan peranMr. ShowArrested DevelopmentThe Increasingly Poor Decisions of Todd MargaretFreak ShowSeri Kung Fu Panda David Cross (lahir 4 April 1964)[1] adalah seorang pelawak tu...
العلاقات الجورجية الليسوتوية جورجيا ليسوتو جورجيا ليسوتو تعديل مصدري - تعديل العلاقات الجورجية الليسوتوية هي العلاقات الثنائية التي تجمع بين جورجيا وليسوتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...
American college basketball season 2007–08 Memphis Tigers men's basketballC-USA tournament champions (vacated)C-USA regular season champions (vacated)NCAA tournament Runner-up (vacated) [Note A]ConferenceConference USARankingCoachesNo. 2APNo. 2Record0–1 (38 wins, 1 loss vacated) [Note A] (0–0[Note A] C-USA, 16 wins vacated)Head coachJohn Calipari (8th year)Assistant coaches Derek Kellogg John Robic Chuck Martin Home arenaFedExForumSeasons← 2006–072008–...
Questa voce sugli argomenti battaglie e seconda guerra mondiale è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Battaglia della Sacca di Fornovoparte della offensiva della primavera 1945 sul fronte italiano della Campagna d'ItaliaIl Gen. Otto Fretter-Pico si arrende alle truppe brasilianeData24 - 29 aprile 1945 LuogoFornovo di Taro, (Parma) EsitoVittoria Alleata, fine delle ostilità militari terr...
Stadion TeladanLokasiLokasiTeladan Barat, Medan Kota, MedanKonstruksiDibuat1952Dibuka1953Direnovasi2024Biaya pembuatanRp 6.000.000 (1952) Rp 510.000.000.000 (2024)[1]ArsitekLiem Bwan TjieData teknisKapasitas20.000PemakaiPSMS Medan Pro Titan FCSunting kotak info • L • BBantuan penggunaan templat ini Stadion Teladan adalah sebuah stadion yang terletak di Kelurahan Teladan Barat, Kecamatan Medan Kota, Kota Medan, Sumatera Utara. Stadion tersebut mempunyai kapasitas sekitar ...
Allium unifolium Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Monokotil Ordo: Asparagales Famili: Amaryllidaceae Genus: Allium Spesies: Allium unifolium Nama binomial Allium unifoliumKellogg Allium unifolium adalah spesies tumbuhan yang tergolong ke dalam famili Amaryllidaceae. Spesies ini juga merupakan bagian dari ordo Asparagales. Spesies Allium unifolium sendiri merupakan bagian dari genus bawang Allium.[1] Nama il...
Para rahib Sistersien saat sedang bekerja Sistersien (O.Cist.) adalah tarekat atau ordo kerahiban yang dirintis Robert dari Molesme.[1] Tarekat ini terbentuk di Citeaux, Prancis pada tahun 1098.[2] Perkembangan dari tarekat ini akibat rasa tidak puas terhadap Peraturan Benediktus di biara Benediktin yang dinilai terlalu longgar pelaksanaannya.[1] Oleh karena itu, tarekat Sistersien berkomitmen untuk lebih memperketat peraturannya dibanding biara Benediktin.[2] ...
Two-dimensional manifold For broader coverage of this topic, see Surface (mathematics). An open surface with x-, y-, and z-contours shown. In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstrac...
Argentine footballer (1940–79) Ermindo Onega Onega in 1961Personal informationFull name Ermindo Ángel OnegaDate of birth (1940-04-30)April 30, 1940Place of birth Las Parejas, Santa Fe, ArgentinaDate of death December 21, 1979(1979-12-21) (aged 39)Position(s) Offensive midfielderSenior career*Years Team Apps (Gls)1957–1968 River Plate 222 (98)1969–1971 Peñarol 74 (22)1972 Vélez Sársfield 30 (6)1975–1977 Deportes La Serena 71 (17)Total 397 (143)International career1960–1967 A...
Luxembourg satellite for geostationary communication Intelsat IV F-5Launch of Intelsat IV F-5.Mission typeCommunicationsOperatorIntelsatCOSPAR ID1972-041A SATCAT no.06052Mission duration7 years (planned) Spacecraft propertiesBusHS-312ManufacturerHughes AircraftLaunch mass1,414 kilograms (3,117 lb)BOL mass730 kilograms (1,610 lb) Start of missionLaunch dateJune 13, 1972, 21:53:04 (1972-06-13UTC21:53:04Z) UTC[1]RocketAtlas SLV-3D Centaur-DLaunch siteCape Canaver...
Indian spacecraft SRE-1The SRE-1 spacecraft on public display at Thiruvananthapuram in April 2007Mission typeTechnologyOperatorISROCOSPAR ID2007-001C SATCAT no.29711Mission duration12 days Spacecraft propertiesManufacturerISROLaunch mass550 kilograms (1,210 lb) Start of missionLaunch date10 January 2007, 03:54 (2007-01-10UTC03:54Z) UTCRocketPSLV PSLV C7Launch siteSatish Dhawan FLPContractorISRO End of missionLanding date22 January 2007, 04:16 (2007-01-22UTC04:17Z)...
City in Kermanshah province, Iran For the administrative division, see Nowsud District. City in Kermanshah, IranNowsud Persian: نوسودCityNowsudCoordinates: 35°09′38″N 46°12′14″E / 35.16056°N 46.20389°E / 35.16056; 46.20389[1]CountryIranProvinceKermanshahCountyPavehDistrictNowsudPopulation (2016)[2] • Total1,949Time zoneUTC+3:30 (IRST) Nowsud (Persian: نوسود)[a] is a city in, and the capital of, Nowsud Distr...
Danielle BrooksBrooks tahun 2014LahirDanielle Brittany Brooks17 September 1989 (umur 34)Augusta, Georgia, Amerika SerikatAlmamaterJuilliard School (BFA)PekerjaanAktrispenyanyiTahun aktif2009–sekarangSuami/istriDennis Gelin (m. 2022)Anak1 Danielle Brittany Brooks (lahir 17 September 1989)[1] adalah seorang aktris dan penyanyi asal Amerika Serikat. Dia dikenal karena perannya sebagai Tasha Taystee Jefferson di serial drama komedi Orange is the...
Carlo VI: Écu d'or á la couronne (corona) KAROLVS DEI GRACIA FRANCORVM REX stemma reale coronato (corona) XPC VInCIT XPC REGnAT XPC ImPERAT[1] croce fiorita e fogliata, gigli nei quarti, dentro un quadrilobo con corone nei quarti AV 29mm, 3,40 g, 11h, zecca di Tolosa, 1445. L'écu á la couronne è stata una moneta d'oro francese. Si tratta di una delle numerose varianti dell'écu d'oro, una moneta coniata in Francia dal 1336 al 1640. L'écu á la couronne fu coniato dal 1384 e...
Walter KohnKohn pada 2012Lahir(1923-03-09)9 Maret 1923Wina, AustriaMeninggal19 April 2016(2016-04-19) (umur 93)Santa Barbara, California, A.S.KebangsaanAmerika SerikatAlmamaterUniversitas Toronto, HarvardDikenal atasTeori fungsi rapatanmetode KKRSuami/istriLois (Adams)[1]Mara (Vishniac) Schiff[2]PenghargaanPenghargaan Benda Terkondensasi Oliver E. Buckley (1961)National Medal of Science (1988)Penghargaan Nobel Kimia (1998)Karier ilmiahBidangFisika, KimiaInstitusiUC Santa...
Compactness redirects here. For other uses, see Compactness (disambiguation). Type of mathematical space Per the compactness criteria for Euclidean space as stated in the Heine–Borel theorem, the interval A = (−∞, −2] is not compact because it is not bounded. The interval C = (2, 4) is not compact because it is not closed (but bounded). The interval B = [0, 1] is compact because it is both closed and bounded. In mathematics, specifically general topology, compactness is a property tha...
Pour les articles homonymes, voir Perrin et Duc de Bellune. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (octobre 2016). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels...