Additive number theory

Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Principal objects of study include the sumset of two subsets A and B of elements from an abelian group G,

and the h-fold sumset of A,

Additive number theory

The field is principally devoted to consideration of direct problems over (typically) the integers, that is, determining the structure of hA from the structure of A: for example, determining which elements can be represented as a sum from hA, where A is a fixed subset.[1] Two classical problems of this type are the Goldbach conjecture (which is the conjecture that 2ℙ contains all even numbers greater than two, where is the set of primes) and Waring's problem (which asks how large must h be to guarantee that hAk contains all positive integers, where

is the set of kth powers). Many of these problems are studied using the tools from the Hardy-Littlewood circle method and from sieve methods. For example, Vinogradov proved that every sufficiently large odd number is the sum of three primes, and so every sufficiently large even integer is the sum of four primes. Hilbert proved that, for every integer k > 1, every non-negative integer is the sum of a bounded number of kth powers. In general, a set A of nonnegative integers is called a basis of order h if hA contains all positive integers, and it is called an asymptotic basis if hA contains all sufficiently large integers. Much current research in this area concerns properties of general asymptotic bases of finite order. For example, a set A is called a minimal asymptotic basis of order h if A is an asymptotic basis of order h but no proper subset of A is an asymptotic basis of order h. It has been proved that minimal asymptotic bases of order h exist for all h, and that there also exist asymptotic bases of order h that contain no minimal asymptotic bases of order h. Another question to be considered is how small can the number of representations of n as a sum of h elements in an asymptotic basis can be. This is the content of the Erdős–Turán conjecture on additive bases.

See also

References

  1. ^ Nathanson (1996) II:1
  • Henry Mann (1976). Addition Theorems: The Addition Theorems of Group Theory and Number Theory (Corrected reprint of 1965 Wiley ed.). Huntington, New York: Robert E. Krieger Publishing Company. ISBN 0-88275-418-1.
  • Nathanson, Melvyn B. (1996). Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics. Vol. 164. Springer-Verlag. ISBN 0-387-94656-X. Zbl 0859.11002.
  • Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. ISBN 0-387-94655-1. Zbl 0859.11003.
  • Tao, Terence; Vu, Van (2006). Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Vol. 105. Cambridge University Press.

Read other articles:

Russian online magazine The Firm's SecretEditor-in-chiefMarina Ivanyushchenkova (2001–2014)Nikolay Kononov (2015–present)CategoriesBusiness magazineFrequencyDaily onlinePublisherRambler&Co [ru];formerly KommersantFirst issueOctober 2001CountryRussiaLanguageRussianWebsitesecretmag.ru The Firm's Secret (Russian: Секрет фирмы) is the Russian online magazine about 'entrepreneurs, companies, management insights and applied business problems'. It has been coming ...

 

Piala RusiaMulai digelar1992Wilayah RusiaJuara bertahanCSKA MoscowTim tersuksesCSKA Moscow (7 gelar) Piala Rusia 2013–14 Piala Rusia (Rusia: Кубок Россииcode: ru is deprecated ; secara resmi bernama Pirelli — Russian Cup) adalah kejuaraan nasional sepak bola di Rusia. Mulai diselenggarakan sejak 1992, pemenangnya berhak mengikuti Liga Eropa UEFA pada musim berikutnya. Daftar juara Musim Juara Skor Runner up Stadion Penonton 1992/93Detail FC Torpedo Moscow (1) 8' Sa...

 

Legenda Sundel BolongPoster film Legenda Sundel BolongSutradaraHanung BramantyoProduserSubagio S.Gope T. SamtaniDitulis olehErik TiwaHanung BramantyoPemeranBaimTio PakusadewoJian BatariUli AulianiPerusahaanproduksiRapi FilmsTanggal rilis 18 Oktober 2007 (2007-10-18) Durasi91 menitNegaraIndonesiaBahasaBahasa IndonesiaPrekuelSundel Bolong Legenda Sundel Bolong adalah sebuah film fiksi horor Indonesia yang dirilis pada 18 Oktober 2007 oleh Rapi Films. Film ini diperankan oleh Baim, Jian Bat...

City in Texas, United StatesPittsburg, TexasCity Location of Pittsburg, TexasCoordinates: 32°59′49″N 94°58′5″W / 32.99694°N 94.96806°W / 32.99694; -94.96806CountryUnited StatesStateTexasCountyCampArea[1] • Total3.61 sq mi (9.35 km2) • Land3.60 sq mi (9.33 km2) • Water0.01 sq mi (0.03 km2)Elevation394 ft (120 m)Population (2020) • Total4,335&#...

 

Czech Greco-Roman wrestler (born 1988) Artur OmarovArtur Omarov at the 2021 World Wrestling Championships in Oslo, NorwayPersonal informationBorn (1988-08-13) 13 August 1988 (age 35)Dagestan, Soviet Union[1][2]SportCountryCzech RepublicSportAmateur wrestlingWeight class97 kgEventGreco-Roman Medal record Men's Greco-Roman wrestling Representing  Czech Republic World Championships 2023 Serbia 97 kg Individual World Cup 2020 Belgrade 97 kg European Championships 20...

 

This article is about the camp in Oregon. For the camp in Ohio, see Pioneer Scout Reservation. For other uses, see Camp Pioneer (disambiguation). Camp PioneerCamp Pioneer circa 1953OwnerCascade Pacific CouncilLocationWillamette National ForestCountryUnited StatesFounded1936FounderCap Monroe Websitecpcbsa.org/project/camp-pioneer/ Scouting portal Camp Pioneer is a Boy Scouts of America camp situated adjacent to the Mount Jefferson Wilderness area within the Willamette National Forest in O...

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГруз...

 

Political party in Poland Yes! For PolandLocal Governments for Poland Tak! Dla PolskiSamorządy dla PolskiAbbreviationT!DPLLeaderJacek Karnowski [pl]Founded31 August 2020 (2020-08-31)Registered6 October 2020 (2020-10-06)Headquartersul. Kartuska 81/680-136 GdańskMembership (2021)500[1]IdeologyRegionalismLocalismDecentralizationPro-EuropeanismProgressivismPolitical positionCentre-left[nb 1]National affiliationSenate Pact 2023 ...

 

Untuk restoran di AS, lihat Gado Gado (rumah makan). Untuk layanan pesan instan Polandia, lihat Gadu-Gadu. Gado-gadoGado-gadoTempat asalIndonesiaDaerahJawa Timur, Surabaya[1]Sunting kotak info • L • BBantuan penggunaan templat ini Buku resep: Gado-gado  Media: Gado-gado Artikel ini merupakan bagian dari seriHidangan Indonesia Hidangan nasional Gado-gado Nasi goreng Rendang Sate Soto Tumpeng Masakan daerah dan budaya Aceh Arab Bali Banjar Batak Gorontalo Betawi T...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт...

 

German World War II submarine U-570 Type VIIC submarine that was captured by the British in 1941. This U-boat is almost identical to U-1052. History Nazi Germany NameU-1052 Ordered5 June 1941 BuilderFriedrich Krupp Germaniawerft AG, Kiel Yard number686 Laid down8 February 1943 Launched16 December 1943 Commissioned20 January 1944 Fate Surrendered on 9 May 1945 Sunk as target on 9 December 1945 during Operation Deadlight General characteristics Class and typeType VIIC submarine Displacement 769...

Rugby teamHindúFull nameHindú ClubUnionURBANickname(s)Torcua, Torcuato, ElefanteFounded10 October 1919; 104 years ago (1919-10-10)LocationDon Torcuato, Greater Buenos Aires, ArgentinaGround(s)Avenida del Golf (Capacity: 5,000)PresidentSantiago AmayaCoach(es)Juan Fernández MirandaLucas OstigliaLeague(s)Top 132022Champion Team kit Official websitewww.hinduclub.com.ar Hindú Club is an Argentine sports club based in the Don Torcuato district of Tigre Partido. The institution...

 

ديفيد رينتول   معلومات شخصية اسم الولادة (بالإنجليزية: David Wilson)‏  الميلاد 29 نوفمبر 1948 (76 سنة)  أبردين  مواطنة المملكة المتحدة  الحياة العملية المدرسة الأم جامعة إدنبرةالأكاديمية الملكية للفنون المسرحية (التخصص:تمثيل) (–1971)[1]  المهنة ممثل،  وممثل مسرحي،...

 

Speech by US president Barack Obama 2011 State of the Union AddressFull video of the speech as published by the White HouseDateJanuary 25, 2011 (2011-01-25)Time9:00 p.m. ESTDuration1 hour, 1 minuteVenueHouse Chamber, United States CapitolLocationWashington, D.C.Coordinates38°53′19.8″N 77°00′32.8″W / 38.888833°N 77.009111°W / 38.888833; -77.009111TypeState of the Union AddressParticipantsBarack ObamaJoe BidenJohn BoehnerPrevious2010 State...

Velika Sočanica Велика Сочаница Administration Pays Bosnie-Herzégovine Entité République serbe de Bosnie Municipalité Derventa Démographie Population 1 072 hab. (2013) Géographie Coordonnées 44° 52′ 57″ nord, 17° 55′ 59″ est Altitude 196 m Localisation Géolocalisation sur la carte : Bosnie-Herzégovine Velika Sočanica Géolocalisation sur la carte : Bosnie-Herzégovine Velika Sočanica Géolocalisation s...

 

Protected natural area in the U.S. state of Oregon Soda Mountain WildernessIUCN category Ib (wilderness area)Soda Mountain and its wilderness areaLocationJackson County, Oregon, United StatesNearest cityAshland, OregonCoordinates42°02′12″N 122°27′45″W / 42.0366096106°N 122.462374498°W / 42.0366096106; -122.462374498[1]Area24,100 acres (9,753 ha)Established2009Governing bodyU.S. Bureau of Land Management The Soda Mountain Wilderness is...

 

Kenyan middle-distance runner Emmanuel WanyonyiWanyonyi (most right) at the 2023 World Athletics Championships in the 800 metres finalPersonal informationNationalityKenyanBorn (2004-08-01) August 1, 2004 (age 19)SportCountryKenyaSportAthleticsEventMiddle-distance runningAchievements and titlesHighest world ranking1st (800m, 2023) [1]Personal best800 m: 1:41.70 (2024) Medal record Men's athletics Representing  Kenya World Championships 2023 Budapest 800 m Diamond League 2023 ...

اعلان استقلال رودسيا كان إعلان استقلال رودسيا أحادي الجانب (يو دي آي) تصريحًا اعتمده مجلس وزراء رودسيا في 11 نوفمبر 1965، يعلن أن رودسيا، وهي إقليم بريطاني في إفريقيا الجنوبية كان يحكم نفسه منذ عام 1923، صارت تعتبر نفسها الآن دولة مستقلة ذات سيادة. تتويجًا لنزاع طويل الأمد بين ا...

 

Abugida script You may need rendering support to display the Bhaiksuki Unicode characters in this article correctly. Bhaiksuki𑰥𑰹𑰎𑰿𑰬𑰲𑰎𑰱Script type abugida Time periodc. 11th–12th century AD [1]DirectionLeft-to-right RegionEastern IndiaLanguagesSanskritRelated scriptsParent systemsEgyptianProto-SinaiticPhoenicianAramaicBrahmiGuptaBhaiksukiSister systemsSharada, Tibetan, Siddham, KalingaISO 15924ISO 15924Bhks (334), ​BhaiksukiUnicodeUnicode alia...