Addition chain

In mathematics, an addition chain for computing a positive integer n can be given by a sequence of natural numbers starting with 1 and ending with n, such that each number in the sequence is the sum of two previous numbers. The length of an addition chain is the number of sums needed to express all its numbers, which is one less than the cardinality of the sequence of numbers.[1]

Examples

As an example: (1,2,3,6,12,24,30,31) is an addition chain for 31 of length 7, since

2 = 1 + 1
3 = 2 + 1
6 = 3 + 3
12 = 6 + 6
24 = 12 + 12
30 = 24 + 6
31 = 30 + 1

Addition chains can be used for addition-chain exponentiation. This method allows exponentiation with integer exponents to be performed using a number of multiplications equal to the length of an addition chain for the exponent. For instance, the addition chain for 31 leads to a method for computing the 31st power of any number n using only seven multiplications, instead of the 30 multiplications that one would get from repeated multiplication, and eight multiplications with exponentiation by squaring:

n2 = n × n
n3 = n2 × n
n6 = n3 × n3
n12 = n6 × n6
n24 = n12 × n12
n30 = n24 × n6
n31 = n30 × n

Methods for computing addition chains

Calculating an addition chain of minimal length is not easy; a generalized version of the problem, in which one must find a chain that simultaneously forms each of a sequence of values, is NP-complete.[2] There is no known algorithm which can calculate a minimal addition chain for a given number with any guarantees of reasonable timing or small memory usage. However, several techniques are known to calculate relatively short chains that are not always optimal.[3]

One very well known technique to calculate relatively short addition chains is the binary method, similar to exponentiation by squaring. In this method, an addition chain for the number is obtained recursively, from an addition chain for . If is even, it can be obtained in a single additional sum, as . If is odd, this method uses two sums to obtain it, by computing and then adding one.[3]

The factor method for finding addition chains is based on the prime factorization of the number to be represented. If has a number as one of its prime factors, then an addition chain for can be obtained by starting with a chain for , and then concatenating onto it a chain for , modified by multiplying each of its numbers by . The ideas of the factor method and binary method can be combined into Brauer's m-ary method by choosing any number (regardless of whether it divides ), recursively constructing a chain for , concatenating a chain for (modified in the same way as above) to obtain , and then adding the remainder. Additional refinements of these ideas lead to a family of methods called sliding window methods.[3]

Chain length

Let denote the smallest so that there exists an addition chain of length which computes . It is known that where is the Hamming weight (the number of ones) of the binary expansion of .[4]

One can obtain an addition chain for from an addition chain for by including one additional sum , from which follows the inequality on the lengths of the chains for and . However, this is not always an equality, as in some cases may have a shorter chain than the one obtained in this way. For instance, , observed by Knuth.[5] It is even possible for to have a shorter chain than , so that ; the smallest for which this happens is ,[6] which is followed by , , and so on (sequence A230528 in the OEIS).

Brauer chain

A Brauer chain or star addition chain is an addition chain in which each of the sums used to calculate its numbers uses the immediately previous number. A Brauer number is a number for which a Brauer chain is optimal.[5]

Brauer proved that

l*(2n−1) ≤ n − 1 + l*(n)

where is the length of the shortest star chain.[7] For many values of , and in particular for , they are equal:[8] l(n) = l*(n). But Hansen showed that there are some values of n for which l(n) ≠ l*(n), such as n = 26106 + 23048 + 22032 + 22016 + 1 which has l*(n) = 6110, l(n) ≤ 6109. The smallest such n is 12509.

Scholz conjecture

The Scholz conjecture (sometimes called the Scholz–Brauer or Brauer–Scholz conjecture), named after Arnold Scholz and Alfred T. Brauer), is a conjecture from 1937 stating that

This inequality is known to hold for all Hansen numbers, a generalization of Brauer numbers; Neill Clift checked by computer that all are Hansen (while 5784689 is not).[6] Clift further verified that in fact for all .[5]

See also

References

  1. ^ D. E. Knuth, The Art of Computer Programming, Vol 2, "Seminumerical Algorithms", Section 4.6.3, 3rd edition, 1997
  2. ^ Downey, Peter; Leong, Benton; Sethi, Ravi (1981), "Computing sequences with addition chains", SIAM Journal on Computing, 10 (3): 638–646, doi:10.1137/0210047. A number of other papers state that finding a shortest addition chain for a single number is NP-complete, citing this paper, but it does not claim or prove such a result.
  3. ^ a b c Otto, Martin (2001), Brauer addition-subtraction chains (PDF), Diplomarbeit, University of Paderborn, archived from the original (PDF) on 2013-10-19, retrieved 2013-10-19.
  4. ^ Schönhage, Arnold (1975), "A Lower Bound for the Length of Addition Chains", Theoretical Computer Science, 1 (1): 1–12, doi:10.1016/0304-3975(75)90008-0
  5. ^ a b c Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer-Verlag. ISBN 978-0-387-20860-2. OCLC 54611248. Zbl 1058.11001. Section C6, p.169.
  6. ^ a b Clift, Neill Michael (2011). "Calculating optimal addition chains" (PDF). Computing. 91 (3): 265–284. doi:10.1007/s00607-010-0118-8.
  7. ^ Brauer, Alfred (1939). "On addition chains". Bulletin of the American Mathematical Society. 45 (10): 736–739. doi:10.1090/S0002-9904-1939-07068-7. ISSN 0002-9904. MR 0000245.
  8. ^ Achim Flammenkamp, Shortest Addition Chains

Read other articles:

PT Hartono Istana TeknologiLogo sejak 1 Maret 2021Nama dagangPolytronSebelumnyaIndonesian Electronic & Engineering (1975-1976)Hartono Istana Electronic (1976-1980)IndustriElektronik & Kendaraan listrikPendahuluHartono Istana ElectronicHartono Istana Teknologi (inkarnasi pertama)Didirikan18 September 1975 (sebagai Indonesian Electronic & Engineering)18 September 1976 (sebagai Hartono Istana Electronic)13 September 1978 (sebagai Hartono Istana Teknologi)30 September 1980 (merger Har...

 

 

Lambang Peta Data dasar Bundesland: Hessen Regierungsbezirk: Gießen Ibu kota: Wetzlar Wilayah: 1.066,49 km² Penduduk: 260.894 (30 September 2005) Kepadatan penduduk: 245 jiwa per km² Nomor pelat kendaraan bermotor: LDK (sampai 1991: L) Pembagian administratif: 23 Gemeinden Alamatkantor bupati: Karl-Kellner-Ring 5135576 Wetzlar Situs web resmi: www.lahn-dill-kreis.de Politik Bupati: Dr. Karl Ihmels (SPD) mulai November 2006: Wolfgang Schuster (SPD) Peta Lahn-Dill-Kreis adalah sebuah distri...

 

 

Tale of the Nine TailedPoster promosiHangul구미호뎐 GenreDramaFantasiPengembangStudio DragonDitulis olehHan Woo-riSutradaraKang Shin-hyoPemeranLee Dong-wookJo Bo-ahKim BumNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiProduser eksekutifKim Young kyuProduserPark Jin-hyung Park Seung-wooRumah produksiHow PicturesDistributortvNRilis asliJaringantvNRilis7 Oktober (2020-10-07) –3 Desember 2020 (2020-12-3) Tale of the Nine Tailed[a] (Hangul: �...

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

 

Attempt made at introducing alternatives where there are none This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Denying the correlative – news · newspapers · books · scholar · JSTOR (December 2008) The informal fallacy of denying the correlative is an attempt made at introducing alternatives where th...

 

 

Halaman ini berisi artikel tentang film. Untuk permainan video, lihat Lemony Snicket's A Series of Unfortunate Events (permainan video). Artikel ini tidak berkait dengan serial novel A Series of Unfortunate Events Lemony Snicket's A Series of Unfortunate EventsPoster internasionalSutradaraBrad SilberlingProduserLaurie MacDonaldWalter F. ParkesDitulis olehSkenario:Robert GordonBuku:Lemony SnicketPemeranEmily Browning Liam AikenJim CarreyKara dan Shelby HoffmanTimothy SpallMeryl StreepNaratorJu...

Jeffrey S. AshbyLahirJeffrey Shears Ashby16 Juni 1954 (umur 69)Dallas, Texas, Amerika SerikatStatusDipekerjakan oleh Blue OriginKebangsaanAmerika SerikatAlmamaterUniversitas Idaho, Sarjana 1976Universitas Tennessee, Magistrat 1993PekerjaanPenerbang angkatan laut, pilot uji cobaPenghargaan Karier luar angkasaAntariksawan NASAPangkatKapten Angkatan Laut Amerika SerikatWaktu di luar angkasa27 hari 16 jam 19 menitSeleksi1994 NASA Group 15MisiSTS-93, STS-100, STS-112Lambang misi PensiunJuni ...

 

 

Yugoslav and Serbian politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ljubomir Davidović – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this template message) Ljubomir DavidovićЉубомир Давидовић2nd Prime Minister of YugoslaviaIn office28 J...

 

 

The Jairus' Daughter window in St Andrew's Church, Epworth, Lincolnshire Detail of the Sower and Reaper window in St Peter and St Paul's Church, Pickering Detail of the King Oswald window in Lancaster Priory Edward Holmes Jewitt (1849–1929)[1] was a Pre-Raphaelite artist working in stained glass and other media. He was one of the two chief designers, along with Carl Almquist, for the Lancaster firm of Shrigley and Hunt, producers of stained-glass windows and church-fittings. In...

Prison museum in Dublin, Ireland Kilmainham GaolPríosún Chill MhaighneannMain HallLocation within DublinLocationKilmainham, Dublin, IrelandCoordinates53°20′30″N 06°18′34″W / 53.34167°N 6.30944°W / 53.34167; -6.30944TypePrison museumOwnerOffice of Public WorksPublic transit accessHeuston railway stationSuir Road Luas stop (Red Line)Websitekilmainhamgaolmuseum.ie National monument of IrelandOfficial nameKilmainham GaolReference no.675[1] Model ...

 

 

La Proclamation royale de 1763. La Proclamation royale est adoptée le 7 octobre 1763 par le roi George III à la suite de la cession de la Nouvelle-France à la Grande-Bretagne à la fin de la guerre de Sept Ans. Elle dresse les cadres administratifs et juridiques de la Province de Québec. Avec la commission du gouverneur et les instructions royales, elle forme la première constitution de la nouvelle colonie britannique. La Proclamation royale est également connue comme l'« Indian B...

 

 

Monty Python's SpamalotSpamalot al Palace Theatre di LondraLingua originaleinglese StatoStati Uniti d'America Anno2004 CompagniaShubert Theatre Generemusical RegiaMike Nichols SoggettoMonty Python e il Sacro Graal, film dei Monty Python SceneggiaturaEric Idle MusicheJohn Du Prez Eric Idle Neil Innes TestiEric Idle CoreografiaCasey Nicholaw Personaggi e attori Re Artù Lancillotto Robin Dennis Galahad. Bedivere Bors Patsy Concord Fra Maynard Premi principali3 Tony Award 3 Drama Desk Award Gram...

1887 composition by Gabriel Fauré Fauré in 1887 The Pavane in F-sharp minor, Op. 50, is a short work by the French composer Gabriel Fauré written in 1887. It was originally a piano piece, but is better known in Fauré's version for orchestra and optional chorus. It was first performed in Paris in 1888, becoming one of the composer's most popular works. History The work is titled after the slow processional Spanish court dance of the same name.[1] Fauré's original version of the pi...

 

 

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

 

Per matrimonio forzato o matrimonio coatto si intende un matrimonio in cui una o entrambe le persone coinvolte, bambini o adulti, vengono fatte sposare contro la propria volontà. Indice 1 Matrimonio combinato e forzato 2 Spose bambine 3 La cultura greco-romana 4 Il ritorno del matrimonio forzato nella società globalizzata 5 Nel mondo 5.1 Europa 5.1.1 Italia 5.1.2 Germania 5.1.3 Regno Unito 5.2 Africa 5.2.1 Gambia 5.2.2 Madagascar 5.2.3 Malawi 5.2.4 Mauritania 5.2.5 Niger 5.2.6 Sudafrica 5.3...

19th/20th-century Danish literature critic and scholar Not to be confused with George Brandis. Georg BrandesGeorg Brandes, sketch, 1900BornGeorg Morris Cohen Brandes(1842-02-04)4 February 1842Copenhagen, DenmarkDied19 February 1927(1927-02-19) (aged 85)Copenhagen, DenmarkOccupationCriticEducationUniversity of CopenhagenRelativesEdvard Brandes (brother)Signature Georg Morris Cohen Brandes (4 February 1842 – 19 February 1927) was a Danish critic and scholar who greatly influenced Scandin...

 

 

The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (February 2015) (Learn how and when to remove this message) Political party in Hong Kong Silent Majority for Hong Kong 幫港出聲ConvenorRobert Chow[1]Founded8 August 2013IdeologyChinese nationalismAnti-Occupy CentralNational affiliationPro-Beijing campColoursBlackSloganDemocracy without ChaosWebsitewww.silentmajority...

 

 

You can help expand this article with text translated from the corresponding article in Portuguese. (August 2012) Click [show] for important translation instructions. View a machine-translated version of the Portuguese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English...

Municipality in Rhineland-Palatinate, GermanyNeuleiningen Municipality Coat of armsLocation of Neuleiningen within Bad Dürkheim district Neuleiningen Show map of GermanyNeuleiningen Show map of Rhineland-PalatinateCoordinates: 49°32′31″N 8°8′22″E / 49.54194°N 8.13944°E / 49.54194; 8.13944CountryGermanyStateRhineland-PalatinateDistrictBad Dürkheim Municipal assoc.LeiningerlandGovernment • Mayor (2019–24) Franz Adam[1] (CDU)Area...

 

 

У этого термина существуют и другие значения, см. Тритон. Тритон Мифология древнегреческая мифология Пол мужской Отец Посейдон[1][2] Мать Салация[3] или Амфитрита[1][2] Братья и сёстры Бентесикима и Рода Дети Паллада, Тритея[вд], Кратеида[вд] �...