ARP4754(), Aerospace Recommended Practice (ARP) Guidelines for Development of Civil Aircraft and Systems, is a published standard from SAE International, dealing with the development processes which support certification of Aircraft systems, addressing "the complete aircraft development cycle, from systems requirements through systems verification."[1] Since their joint release in 2002, compliance with the guidelines and methods described within ARP4754() and its companion ARP4761()[2] have become mandatory for effectively all civil aviation world-wide.[3]
Revision A was released in December 2010. It was recognized by the FAA through Advisory Circular AC 20-174 published November 2011.[4][5]EUROCAE jointly issued the document as ED–79.
ARP4754 Revision B is an interim release meant to expedite consistency with ARP4761 Revision A, "Safety Assessment Process", which was also released in December 2023.
While the general principles of FDAL/IDAL assignment and safety assessment process were retained in ARP4754B/ED-79B, the details of these activities and process were transferred to ARP4761A/ED-135.
Pending major adjustments to ARP4754 are deferred to a future Revision C.[6][7]
Objectives of the document
Emphasizing safety aspects, the Aerospace Recommended Practice (ARP) is a guideline for development of civil aircraft and systems. Revision A was a substantial rewrite of the document which describes the safety process as a part of an Integrated Development Process. A significant new section is devoted to the process of determining Development Assurance Level (DAL) which determines the assurance rigor of development and verification activities for complex hardware and software aspects of airborne systems.
ARP4754 is intended to be used in conjunction with the safety assessment process defined in SAE ARP4761 (updated to Revision A in December 2023) and is supported by other aviation standards such as RTCADO-178C/DO-178B and DO-254.
This guideline addresses Functional Safety and design assurance processes. DAL allocation pertaining to functional failure conditions and hazard severity are assigned to help mitigate risks. Functional Hazard Analyses / Assessments are central to determining hazards and assigning DAL, in addition to requirements based testing and other verification methods. This guideline concerns itself with Physical (item) DAL and Functional (software/systems integration behavior) DAL and the Safety aspects of systems for the whole life-cycle for systems that implement aircraft functions.
In May 1996, the FAA Aviation Rulemaking Advisory Committee (ARAC) was tasked with a review of harmonized FAR/JAR 25.1309, AC 1309-1A, and related documents, and to consider revision to AC 1309-1A incorporating recent practice, increasing complex integration between aircraft functions and the systems that implement them,[9] and the implications of new technology. This task was published in the Federal Register as 61 FR 26246-26247 (1996-05-24). The focus was to be on safety assessment and fault-tolerant critical systems.
In a parallel effort, SAE published ARP4754 in November 1996. In 2002 ARAC submitted to the FAA a draft Notice of Proposed Rulemaking (NPRM) and draft revision AC 1309-1B (the draft ARSENAL version) recognizing the role of ARP4754 in complex system certification.[10] Draft B of AC 25.1309-1 remains unreleased, but ARP4754 became broadly recognized as an appropriate standard for aircraft system development and certification and aircraft have been certified under the AC 25.1309-1B-Arsenal draft. The corresponding EASA Acceptable Means of Compliance AMC 25.1309 (included as a section of CS-25) does recognize ARP4754/ED–79.
The FAA and EASA have both subsequently recognized ARP4754/ED–79 as valid for certification of other aircraft categories, and for specific systems such as avionic databuses. ARP4754A and ED79A were released by SAE and EUROCAE in December 2010 with the document title changed to Guidelines For Development Of Civil Aircraft and Systems. ARP4754A recognizes AMC 25.1309 (published in 2003) and AC 25.1309-1B-Arsenal draft.[11] This revision expands the design assurance concept for application at the aircraft and system level and standardizes on the use of the term development assurance. As a consequence, Functional Development Assurance Level (FDAL) is introduced for aircraft and systems concerns and the term Design Assurance Level has been renamed Item Development Assurance Level (IDAL).[12] Furthermore, there is acknowledgement that the terms Error, Failure, and Failure Condition come from AMC 25.1309.[13] The qualitative and quantitative classification of failure conditions by severity and probability now used by ARP4754A[14] and ARP4761[15] are defined in AMC 25.1309/AC 25.1309–1B-Arsenal draft.
^Marc Ronell (November 18–20, 2020). "Discussion of aviation software oversight improvement". Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. p. 128. doi:10.1145/3426428.3426926. ISBN978-1-4503-8178-9. Retrieved 2024-12-03. ARP4754 and ARP4761 describe guidelines and methods of performing a safety assessment for the certification of civil aircraft.
^Anastasiia Balashova (March 12, 2024). "Release of ARP4754B: Exploring the updates". DMD Solutions. Retrieved 2024-09-04. All of these [advisory circulars] elevates it from a 'guideline' to a 'mandatory' status, which the new version ARP4754B inherits. ... ARP4754B primarily focuses on alignment with the recently released ARP4761A, indicating that there are no significant changes in development principles compared to ARP4754A. The core of the development process remains consistent, and we expect some big changes in the forthcoming version, ARP4754C.
^"SAE ARP4754, Revision B, 2023: Guidelines for Development of Civil Aircraft and Systems". oviss.jp. Retrieved 2024-09-04. Revision B is primarily focused on the necessary updates to align its contents with ARP4761A/ED-135. There were extensive discussions within S-18/WG-63 on the need to limit scope of this revision versus expanding its contents to include emerging system development techniques in use by the industry. Given the timeframe of ARP4761A/ED-135 publication, and the necessity to maintain consistency between both ARP4754B/ED-79B and ARP4761A/ED-135, the first option, limiting the scope, was chosen and suggested changes that would further expand ARP4754/ED-79 contents were deferred for a new Revision C. As a result, while the general principles of FDAL/IDAL assignment were retained in ARP4754B/ED-79B, the details of FDAL/IDAL assignment activities were transferred to ARP4761A/ED-135. The same approach was adopted for all safety assessment process contents in ARP4754B/ED-79B.
^Cary Spitzer, Uma Ferrell, Thomas Ferrell Digital Avionics Handbook, 3rd ed., CRC Press, Boca Raton, FL. 2015, p. 9-10. "At this writing, that AC[25.1309-1B-Arsenal draft] has not been adopted, but is considered to exist as a rather mature draft referred to as the arsenal version. The FAA has accepted proposals by applicants to use arsenal on recent development programs, while EASE has incorporated similar guidance within CS-25, ...."