ARHGEF11

ARHGEF11
Available structures
PDBHuman UniProt search: PDBe RCSB
Identifiers
AliasesARHGEF11, GTRAP48, PDZ-RHOGEF, Rho guanine nucleotide exchange factor 11
External IDsOMIM: 605708; MGI: 2441869; HomoloGene: 11409; GeneCards: ARHGEF11; OMA:ARHGEF11 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014784
NM_198236
NM_001377418
NM_001377419

NM_001003912
NM_001360195
NM_001360197

RefSeq (protein)

NP_055599
NP_937879
NP_001364347
NP_001364348

n/a

Location (UCSC)Chr 1: 156.93 – 157.05 MbChr 3: 87.52 – 87.65 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Rho guanine nucleotide exchange factor 11 is a protein that in humans is encoded by the ARHGEF11 gene.[5][6][7] This protein is also called RhoGEF11 or PDZ-RhoGEF.

Function

Rho guanine nucleotide exchange factor 11 is guanine nucleotide exchange factor (GEF) for the RhoA small GTPase protein.[8] Rho is a small GTPase protein that is inactive when bound to the guanine nucleotide GDP. But when acted on by Rho GEF proteins such as RhoGEF1, this GDP is released and replaced by GTP, leading to the active state of Rho. In this active, GTP-bound conformation, Rho can bind to and activate specific effector proteins and enzymes to regulate cellular functions.[9] In particular, active Rho is a major regulator of the cell actin cytoskeleton.[9]

RhoGEF11 is a member of a group of four RhoGEF proteins known to be activated by G protein coupled receptors coupled to the G12 and G13 heterotrimeric G proteins.[8] The others are ARHGEF1 (also known as p115-RhoGEF), ARHGEF12 (also known as LARG) and AKAP13 (also known as ARHGEF13 and Lbc). [10][11] GPCR-regulated RhoGEF11 (and these related GEF proteins) acts as an effector for G12 and G13 G proteins. In addition to being activated by G12 or G13 G proteins, three of these four RhoGEF proteins (ARHGEF1/11/12) also function as RGS family GTPase-activating proteins (GAPs) to increase the rate of GTP hydrolysis of G12/G13 alpha proteins (which are themselves GTPase proteins). This action increases the rate of G protein deactivation, limiting the time during which these RhoGEFs activate Rho.[12]

Two alternative transcripts encoding different isoforms have been described.[7]

Interactions

ARHGEF11 has been shown to interact with:

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000132694Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000041977Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Rümenapp U, Blomquist A, Schwörer G, Schablowski H, Psoma A, Jakobs KH (Oct 1999). "Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member". FEBS Letters. 459 (3): 313–8. doi:10.1016/S0014-5793(99)01270-3. PMID 10526156. S2CID 8529412.
  6. ^ Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Apr 1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 4 (2): 141–50. doi:10.1093/dnares/4.2.141. PMID 9205841.
  7. ^ a b "Entrez Gene: ARHGEF11 Rho guanine nucleotide exchange factor (GEF) 11".
  8. ^ a b Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS (Feb 1999). "A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho". The Journal of Biological Chemistry. 274 (9): 5868–79. doi:10.1074/jbc.274.9.5868. PMID 10026210.
  9. ^ a b Thumkeo, D; Watanabe, S; Narumiya, S (Oct–Nov 2013). "Physiological roles of Rho and Rho effectors in mammals". European Journal of Cell Biology. 92 (10–11): 303–315. doi:10.1016/j.ejcb.2013.09.002. PMID 24183240.
  10. ^ Fukuhara S, Chikumi H, Gutkind JS (2001). "RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?". Oncogene. 20 (13): 1661–8. doi:10.1038/sj.onc.1204182. PMID 11313914.
  11. ^ Diviani, D; Soderling, J; Scott, JD (Nov 2001). "AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation". Journal of Biological Chemistry. 276 (47): 44247–44257. doi:10.1074/jbc.M106629200. PMID 11546812.
  12. ^ Kozasa T (2001). "Regulation of G protein-mediated signal transduction by RGS proteins". Life Sci. 68 (19–20): 2309–17. doi:10.1016/S0024-3205(01)01020-7. PMID 11358341.
  13. ^ a b Chen, Z; Singer, WD; Danesh, SM; Sternweis, PC; Sprang, SR (Oct 2008). "Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF". Structure. 16 (10): 1532–1543. doi:10.1016/j.str.2008.07.009. PMC 2586972. PMID 18940608.
  14. ^ a b c Perrot V, Vazquez-Prado J, Gutkind JS (Nov 2002). "Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF". The Journal of Biological Chemistry. 277 (45): 43115–20. doi:10.1074/jbc.M206005200. PMID 12183458.
  15. ^ a b Swiercz JM, Kuner R, Behrens J, Offermanns S (Jul 2002). "Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology". Neuron. 35 (1): 51–63. doi:10.1016/S0896-6273(02)00750-X. PMID 12123608. S2CID 18981429.
  16. ^ Oinuma I, Katoh H, Harada A, Negishi M (Jul 2003). "Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells". The Journal of Biological Chemistry. 278 (28): 25671–7. doi:10.1074/jbc.M303047200. PMID 12730235.
  17. ^ Hirotani M, Ohoka Y, Yamamoto T, Nirasawa H, Furuyama T, Kogo M, Matsuya T, Inagaki S (Sep 2002). "Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors". Biochemical and Biophysical Research Communications. 297 (1): 32–7. doi:10.1016/S0006-291X(02)02122-8. PMID 12220504.

Further reading